Inorganic Chemistr

Synthesis, Structure, and Reactivity of Ruthenium Carboxylato and 2-Oxocarboxylato Complexes Bearing the Bis(3,5-dimethylpyrazol-1-yl)acetato Ligand

Stefan Tampier,^{†,‡} Rainer Müller,^{‡,§} Andrea Thorn,[†] Eike Hübner,[†] and Nicolai Burzlaff*,[†]

Inorganic Chemistry, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany, and Department of Chemistry, University of Konstanz, Fach M728, D-78457 Konstanz, Germany

Received January 4, 2008

A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO₂, and nitrosyl complexes [Ru(bdmpza)(O₂CR)(L)(PPh₃)] $(L = NCMe, py, CO, SO_2)$ and $[Ru(bdmpza)(O_2CR)(L)(PPh_3)]BF_4$ (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh₃)] (4) and $[Ru(bdmpza)(O_2CR)(NCMe)(PPh_3)]$ (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes $[Ru(bdmpza)Cl(PPh_3)(py)]$ (6) and $[Ru(bdmpza)(O_2CR)(PPh_3)(py)]$ (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes $[Ru(bdmpza)(O_2CR)(PPh_3)_2]$ (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes $[Ru(bdmpza)(O_2CR)(CO)-$ (PPh₃)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O₂CMe)(PPh₃)(SO₂)] (10a) and [Ru(bdmpza)(O₂CPh)(PPh₃)(SO₂)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO₂. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O₂C(CO)R)(PPh₃)₂] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO₂, whereas the nitrosyl complex cations [Ru(bdmpza)(O₂-CMe)(NO)(PPh₃)]⁺ (11) and [Ru(bdmpza)(O₂C(CO)Ph)(NO)(PPh₃)]⁺ (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes $[Ru(bdmpza)(O_2CR)(NO)(PPh_3)]BF_4$ (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes $[Ru(bdmpza)(O_2C(CO)R)(NO)(PPh_3)]BF_4$ (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF₄]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh₃)] (4), the pyridine complexes [Ru(bdmpza)(O₂CMe)(PPh₃)(py)] (7a) and [Ru(bdmpza)(O₂CC(O)Et)(PPh₃)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O₂CPh)(CO)(PPh₃)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O₂-CPh)(PPh₃)(SO₂)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O₂C(CO)Me)(NO)(PPh₃)]BF₄ (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O₂CPh)(PPh₃)(SO₂)] (10b) revealed a rather unusual intramolecular SO₂-O₂CPh Lewis acid-base adduct.

Introduction

Bis(pyrazol-1-yl)acetic acids, such as bis(3,5-dimethylpyrazol-1-yl)acetic acid (Hbdmpza) introduced 1999 by A. Otero,¹ are available in a broad spectrum of chiral and achiral ligands and thus have been subject of two very recent reviews by Otero and Pettinari.^{1,2} Complexes of these N,N,O donor ligands with various transition metal complexes reveal their potential in organometallic and coordination chemistry as scorpionate ligands closely related to Tp.^{1,2} Lately, we reported on ruthenium(II) complexes bearing the bdmpza

^{*} To whom correspondence should be addressed. E-mail: burzlaff@ chemie.uni-erlangen.de. Phone: +49(0)9131/85-28976. Fax: +49(0)9131/85-27387.

[†] University of Erlangen-Nürnberg.

^{*} Both authors contributed equally to this work.

[§] University of Konstanz.

Otero, A.; Fernańdez-Baeza, J.; Antinõlo, A.; Tejeda, J.; Lara-Sańchez, A. Dalton Trans. 2004, 1499–1510.

⁽²⁾ Pettinari, C.; Pettinari, R. Coord. Chem. Rev. 2005, 249, 663-691.

ligand such as $[Ru(bdmpza)Cl(PPh_3)_2]$ (1).³ Because of the sterical hindrance of the bdmpza ligand, one of the PPh₃ ligands and the chlorido ligand can easily be exchanged for carboxylato or cumulynidene ligands.^{3,4} Other ruthenium complexes bearing the bdmpza ligand have recently been reported by Cao and Otero.⁵ The carboxylato complexes $[Ru(bdmpza)(O_2CR)(PPh_3)]$ (2a: R = Me; 2b: R = Ph) and the 2-oxocarboxylato complexes [Ru(bdmpza)(O₂C(CO)R)- (PPh_3)] (**3a**: R = Me; **3b**: R = Et; **3c**: R = Ph) showed significant tendencies for a hemilabile $\kappa^1 O^1$ -behavior regarding the $\kappa^2 O^1$, O^1 -carboxylato and $\kappa^2 O^1$, O^2 -2-oxocarboxylato ligands.³ As a proof for these hemilabile ligands, we recently reported on a water adduct [Ru(bdmpza)(O₂CMe)(OH₂)- (PPh_3)] (2a × H₂O) and an acetonitrile complex [Ru- $(bdmpza)(O_2C(CO)Ph)(NCMe)(PPh_3)]$ (3c × NCMe).^{3b} Ruthenium(II) complexes with hemilabile ligands, as well as with coordinated solvent molecules, are often key compounds in inorganic syntheses or catalytic reactions. A recent example is the ruthenium hydridotris(pyrazolyl)borate (Tp) complex [RuTpH(NCMe)(PPh₃)], which exhibits catalytic activity for the hydrogenation of CO₂ to formic acid and is easily derived from [RuTpCl(NCMe)(PPh₃)].⁶ Thus, inspired by [RuTpCl(PPh₃)(MeCN)] we decided to study the coordination of acetonitrile and pyridine by various ruthenium(II) complexes bearing the bdmpza ligand. Furthermore, 16 VE complex fragments coordinating small molecules often allow the syntheses and stabilization of otherwise highly reactive molecules in the complex environment. As an example the synthesis of sulfene complexes starting from ruthenium SO₂ complexes should be mentioned.⁷ Therefore, here we study also the coordination of small molecules CO, NO, and especially SO₂ that might act as π acceptor ligands L in ruthenium complexes [Ru(bdmpza)(O_2CR)(L)(PPh₃)] (L = CO, SO₂, NO).

Experimental Section

All experiments were carried out with Schlenk technique under an argon atmosphere. Solvents were dried by distillation over suitable drying agents [THF (Na), Et₂O (Na), pentane (LiAlH₄), hexane (Na), CH₂Cl₂ (CaH₂)] prior to use and were stored under Argon. IR: Biorad FTS 60, CaF₂ cuvets (0.5 mm) or KBr matrix. ¹H NMR and ¹³C NMR: Bruker AC 250, Bruker DRX 600 Avance and Varian Unity Inova 400. ³¹P NMR: JEOL GX 400 and Varian Unity Inova 400. 2D NMR experiments: Bruker DRX 600 Avance. δ values are given relative to TMS (¹H), solvent peaks (¹³C) or to triphenylphosphine at -4.72 ppm as internal standard (³¹P). FAB MS: modified Finnigan MAT 312. Elemental analyses: Analytical Laboratory of the Department of Chemistry, University of Konstanz or Euro EA 3000 (Euro Vector) and EA 1108 (Carlo Erba) ($\sigma \pm$ 1% of the measured content). A modified Siemens P4 and an Enraf-Nonius CAD 4 Mach 3 diffractometer were used for X-ray structure determination. The syntheses of [Ru(bdmpza)Cl(PPh₃)₂] (1), the ruthenium carboxylato complexes [Ru(bdmpza)(O₂CR)(PPh₃)] (2a: R = Me, 2b: R = Ph) and the ruthenium 2-oxocarboxylato complexes [Ru(bdmpza)($O_2CC(O)R$)(PPh₃)] (**3a**: R = Me, **3b**: R = Ph, **3c**: R = Et, **3d**: $R = CH_2CH_2CO_2H$) were reported recently.³ To remove last traces of thallous carboxylate the acetato and benzoato complexes 2a and 2b were recrystallized from CH₂Cl₂/ pentane. All the 2-oxocarboxylato complexes used for experiments had been synthesized by using this crystalline complex 2a. Acetonitrile and pyridine have been distilled prior to use. Nitrogen oxide, carbon monoxide, carbon dioxide, nitrogen and sulfur dioxide were used as purchased. For differentiation of the NMR data the signals of the bdmpza ligand next to the PPh₃ ligand are marked without an apostrophe.

Method A: General Procedure for the Syntheses of Acetonitrile Complexes. The chlorido, acetato, or benzoato complexes 1, 2a, or 2b were dissolved in acetonitrile, and the reaction mixture was stirred at ambient temperature. The progress of the reaction was monitored by IR spectroscopy. After the reaction was completed, the solvent was reduced in vacuo until precipitation occurred. Precipitation was completed by adding pentane. The product was filtered off and dried in vacuo.

[Ru(bdmpza)Cl(NCMe)(PPh₃)] (4). Reaction of [Ru(bdmpza) Cl(PPh₃)₂] (1) (0.428 g, 0.471 mmol) with acetonitrile (20 mL) for 4 h according to method A but with heating under reflux afforded [Ru(bdmpza)Cl(NCMe)(PPh₃)] (4) as a yellow crystalline powder.

Yield 0.301 g (0.438 mmol, 93%). mp 230 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 2275 \text{ w} (C \equiv N)$, 2254 vw, 1660 vs (CO_2^{-}) , 1647 sh, 1565 w (C=N), 1483 w, 1463 vw, 1434 m, 1420 w cm⁻¹. IR (KBr): $\tilde{\nu} = 2269$ w (C=N), 2247 vw, 1657 vs (CO₂⁻), 1642 sh, 1583 vw, 1561 m (C=N), 1483 w, 1460 vw, 1433 m, 1416 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max} /nm (log ε) = 237.0 (4.34), 267.0 (3.91), 274.0 (3.90). FAB-MS (NBOH-matrix): m/z (%) = 686 (10) $[M^+]$, 645 (100) $[M^+ - MeCN]$, 610 (33) $[M^+ - MeCN - Cl]$, 566 (29) [M⁺ - MeCN - Cl - CO₂], 363 (38) [M⁺ - MeCN -Cl – bdmpza]. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.88$ (s, 3H, NC-CH₃), 1.88 (s, 3H, C^{3'}-CH₃), 2.47 (s, 3H, C⁵-CH₃), 2.51 (s, 3H, C^{5'}-CH₃), 2.71 (s, 3H, C³-CH₃), 5.89 (s, 1H, H_{pz}), 6.04 (s, 1H, H_{pz}), 6.51 (s, 1H, CH), 7.26 (m, 6H, *m*-PPh₃), 7.28 (m, 3H, *p*-PPh₃), 7.30 (m, 6H, *o*-PPh₃) ppm. ¹³C NMR (CDCl₃, 100.5 MHz): $\delta = 3.67$ (NC-CH₃), 10.9 (C^{5'}-CH₃), 11.4 (C⁵-CH₃), 14.4 (C^{3'}-CH₃), 15.0 (C³-CH₃), 69.1 (CH), 108.6 (d, C^{4'}, ${}^{4}J_{CP} = 2.8$ Hz), 108.8 (C⁴), 124.0 (CN), 127.4 (d, *m*-PPh₃, ${}^{3}J_{CP} = 9.2$ Hz), 129.0 (d, *p*-PPh₃, ${}^{3}J_{CP} = 1.8$ Hz), 134.3 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.5$ Hz), 134.7 (d, *i*-PPh₃, ${}^{1}J_{CP} = 40.7$ Hz), 140.3 (d, C^{5'}, ${}^{5}J_{CP} = 1.0$ Hz), 141.6 (C⁵), 155.2 (d, C^{3'}, ${}^{3}J_{CP} = 2.6$ Hz), 158.4 (C³), 167.6 (CO₂⁻) ppm. ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 48.8$ ppm. Anal. Calcd for C32H33ClN5O2PRu (687.14): C, 55.93; H, 4.84; N, 10.19. Found C, 55.87; H, 4.76; N, 10.06.

 $[Ru(bdmpza)(O_2CMe)(NCMe)(PPh_3)] \ (5a). \ Reaction \ of \\ [Ru(bdmpza)(O_2CMe)(PPh_3)] \ (2a) \ (0.134 \ g, \ 0.200 \ mmol) \ with \\ acetonitrile \ (10 \ mL) \ for \ 5 \ h \ according \ to \ method \ A \ afforded$

^{(3) (}a) López-Hernández, A.; Müller, R.; Kopf, H.; Burzlaff, N. Eur. J. Inorg. Chem. 2002, 671–677. (b) Müller, R.; Hübner, E.; Burzlaff, N. Eur. J. Inorg. Chem. 2004, 2151–2159.

⁽⁴⁾ Kopf, H.; Pietraszuk, C.; Hübner, E.; Burzlaff, N. Organometallics 2006, 25, 2533–2546.

 ^{(5) (}a) Ortiz, M.; Díaz, A.; Cao, R.; Otero, A.; Fernández-Baeza, J. *Inorg. Chim. Acta* 2004, 357, 19–24. (b) Ortiz, M.; Díaz, A.; Cao, R.; Suardíaz, R.; Otero, A.; Antinõlo, A.; Fernández-Baeza, J. *Eur. J. Inorg. Chem.* 2004, 3353–3357.

^{(6) (}a) Chan, W.-C.; Lau, C. P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S. M.; Jia, G. Organometallics **1997**, *16*, 34–44. (b) Yin, C.; Xu, Z.; Yang, S.-Y.; Ng, S. M.; Wong, K. Y.; Lin, Z.; Lau, C. P. Organometallics **2001**, *20*, 1216–1222. (c) Ng, S. M.; Yin, C.; Yeung, C. H.; Chan, T. C.; Lau, C. P. Eur. J. Inorg. Chem. **2004**, 1788–1793. (d) Lau, C. P.; Ng, S. M.; Jia, G.; Lin, Z. Coord. Chem. Rev. **2007**, *251*, 2223– 2237.

 ^{(7) (}a) Schenk, W. A.; Urban, P.; Dombrowski, E. *Chem. Ber.* 1993, *126*, 679–684.
 (b) Schenk, W. A.; Bezler, J.; Burzlaff, N.; Hagel, M.; Steinmetz, B. *Eur. J. Inorg. Chem.* 2000, 287–297.

 $[Ru(bdmpza)(O_2CMe)(NCMe)(PPh_3)]$ (5a) as a yellow crystalline powder.

Yield 0.141 g (0.198 mmol, 99%). mp 145 °C (dec). IR (CH₂Cl₂): $\tilde{\nu} = 2271 \text{ w} (C \equiv N)$, 1663 vs (CO₂⁻), 1648 sh, 1608 m, 1591 sh, 1564 w (C=N), 1484 w, 1464 vw, 1434 m, 1417 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 2263$ m (C=N), 1659 vs (CO₂⁻), 1606 s, 1587 sh, 1564 w (C=N), 1483 w, 1463 vw, 1434 m, 1417 vw cm⁻¹. UV/ vis (CH₂Cl₂): λ_{max}/nm (log ε) = 236.0 (4.36), 268.0 (3.91), 275.0 (3.90), 289.0 (3.88). FAB-MS (NBOH-matrix): m/z (%) = 711 (8) $[M^+]$, 651 (97) $[M^+ - HO_2CMe]$, 610 (100) $[M^+ - HO_2CMe -$ MeCN], 565 (46) $[M^+ - HO_2CMe - CO_2 - MeCN - H]$. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.31$ (s, 3H, OAc-CH₃), 1.56 (s, 3H, C³-CH₃), 2.22 (s, 3H, NC-CH₃), 2.43 (s, 3H, C^{3'}-CH₃), 2.47 (s, 3H, C^{5'}-CH₃), 2.54 (s, 3H, C⁵-CH₃), 5.91 (s, 1H, H_{pz}), 6.07 (s, 1H, H_{pz}), 6.55 (s, 1H, CH), 7.10–7.50 (m, 15H, PPh₃) ppm. ¹³C NMR (CDCl₃, 62.9 MHz): $\delta = 4.60$ (NC-CH₃), 11.0 (C^{5'}-CH₃), 11.6 (C⁵-CH₃), 13.3 (C^{3'}-CH₃), 14.2 (C³-CH₃), 23.8 (OAc-CH₃), 69.7 (CH), 108.2 (d, C^{4'}, ${}^{4}J_{CP} = 2.9$ Hz), 108.4 (C⁴), 124.7 (CN), 127.5 (d, *m*-PPh₃, ${}^{3}J_{CP} = 9.3$ Hz), 128.9 (*p*-PPh₃), 134.7 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.7$ Hz), n.d. (*i*-PPh₃), 140.5 (C⁵), 142.3 (C⁵), 154.0 (C³), 157.0 (C³), 166.3 (CO₂⁻), 179.7 (OAc-CO₂⁻) ppm. ³¹P NMR (CDCl₃, 161.8 MHz): δ = 53.4 ppm. Anal. Calcd for $C_{34}H_{36}N_5O_4PRu \times CH_2Cl_2$ (795.67): C, 52.83; H, 4.81; N, 8.80. Found: C, 52.90; H, 5.03; N, 8.89.

 $[Ru(bdmpza)(O_2CPh)(NCMe)(PPh_3)] (5b). Reaction of [Ru(bdmpza)(O_2CPh)(PPh_3)] (2b) (0.356 g, 0.487 mmol) in aceto$ $nitrile (25 mL) for 4 h according to method A afforded [Ru(bdmpza)(O_2CPh)(NCMe)(PPh_3)] (5b) as a yellow microcrys$ talline powder.

Yield 0.372 g (0.481 mmol, 99%). mp 160 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 2270 \text{ w} (C \equiv N)$, 1663 vs (CO_2^{-}) , 1645 sh, 1608 m, 1574 m (C=N), 1570 m, 1484 w, 1464 vw, 1434 m, 1419 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 2268$ m (C=N), 1659 vs (CO₂⁻), 1605 s, 1570 s (C=N), 1484 w, 1465 vw, 1434 m, 1419 vw cm⁻¹. UV/vis $(CH_2Cl_2): \lambda_{max}/nm (\log \varepsilon) = 238.0 (4.33), 268.0 (3.94), 275.0 (3.93),$ 296.0 (3.93). FAB-MS (NBOH-matrix): *m*/*z* (%) = 773 (3) [M⁺], 731 (100) $[M^+ - MeCN]$, 651 (29) $[M^+ - O_2CPh]$, 610 (43) $[M^+$ - O₂CPh - MeCN]. Isomer A: ¹H NMR (CDCl₃, 600 MHz): $\delta =$ 1.61 (s, 3H, C³-CH₃), 2.23 (s, 3H, NC-CH₃), 2.30 (s, 3H, C^{3'}-CH₃), 2.51 (s, 3H, C^{5'}-CH₃), 2.57 (s, 3H, C⁵-CH₃), 5.93 (s, 1H, H_{pz}), 6.01 (s, 1H, H_{pz}), 6.62 (s, 1H, CH), 7.05–7.65 (m, 20H, Ph and PPh₃) ppm. ¹³C NMR (CDCl₃, 150.9 MHz): $\delta = 2.23$ (NC-CH₃), 11.0 (C^{5'}-CH₃), 11.6 (C⁵-CH₃), 13.3 (C^{3'}-CH₃), 14.2 (C³-CH₃), 69.6 (CH), 108.0 (C⁴), 108.4 (C⁴), 124.7 (CN), 140.2 (C^{5'}), 142.4 (C⁵), 153.8 (C^{3'}), 157.0 (C³), 166.8 (CO₂⁻), 174.6 (Ph- CO_2^{-}) ppm. ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 53.6$ ppm. Isomer B: ¹H NMR (CDCl₃, 600 MHz): $\delta = 1.57$ (s, 3H, C³-CH₃), 1.92 (s, 3H, NC-CH₃), 2.25 (s, 3H, C^{3'}-CH₃), 2.49 (s, 3H, C^{5'}-CH₃), 2.57 (s, 3H, C⁵-CH₃), 5.91 (s, 1H, H_{pz}), 5.97 (s, 1H, H_{pz'}), 6.56 (s, 1H, CH), 7.05–7.65 (m, 20H, Ph and PPh₃) ppm. ¹³C NMR (CDCl₃, 150.9 MHz): $\delta = 3.56$ (NC-CH₃), 11.0 (C^{5'}-CH₃), 11.5 (C⁵-CH₃), 13.2 (C^{3'}-CH₃), 13.9 (C³-CH₃), 69.2 (CH), 107.8 (C^{4'}), 108.3 (C⁴), 124.1 (CN), 140.2 (C^{5'}), 141.5 (C⁵), 153.9 (C^{3'}), 157.5 (C³), 167.8 (CO₂⁻), 174.9 (Ph-CO₂⁻) ppm. ³¹P NMR (CDCl₃, 161.8 MHz): δ = 51.9 ppm. ¹³C NMR (both isomers, CDCl₃, 150.9 MHz): δ = 126.2, 126.6, 126.9, 127.4, 127.6, 127.7, 127.9, 128.4, 128.5, 128.6, 128.7, 128.9, 129.0, 131.9, 132.0, 132.1, 133.6, 133.7, 134.0, 134.1, 134.4, 134.8, 135.0, 137.3, 137.7 (Ph and PPh₃). Anal. Calcd for C₃₉H₃₈N₅O₄PRu (772.80): C, 60.61; H, 4.96; N, 9.06. Found C, 60.27; H, 5.07; N, 8.84.

Method B: General Procedure for the Syntheses of Pyridine Complexes. To a solution of the chlorido, carboxylato, or 2-oxocarboxylato complexes 1, 2a, 2b, and 3a-c in dichloromethane was added pyridine. The reaction mixture was stirred at ambient temperature and the progress of the reaction was monitored by IR spectroscopy. After the reaction was completed, the solvent was reduced in vacuo, and the product was precipitated with *n*-pentane. The precipitate was filtered off and dried in vacuo.

[Ru(bdmpza)Cl(PPh₃)(py)] (6). Reaction of [Ru(bdmpza)Cl(P-Ph₃)₂] (1) (0.308 g, 0.339 mmol) in CH₂Cl₂ (15 mL) with pyridine (0.271 g, 3.43 mmol) for 3 days according to method B afforded [Ru(bdmpza)Cl(PPh₃)(py)] (6) as a yellow crystalline powder.

Yield 0.237 g (0.327 mmol, 96%). mp 240 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1659 \text{ vs} (CO_2^-)$, 1565 w (C=N), 1482 m, 1462 vw, 1447 vw, 1434 m, 1420 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1657$ vs (CO₂⁻), 1642 vw, 1565 m (C=N), 1483 m, 1461 w, 1446 vw, 1437 w, 1432 w, 1419 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max}/nm (log ε) = 235.0 (4.33), 268.0 (3.74), 275.0 (3.75), 304.0 (3.76), 362.0 (3.71). FAB-MS (NBOH-matrix): m/z (%) = 724 (7) [M⁺], 647 (7) [M⁺ - Py], 460 (6) $[M^+ - PPh_3]$, 363 (6) $[M^+ - Cl - Py - bdmpza]$, 217 (100) $[M^+ - PPh_3 - bdmpza]$. ¹H NMR (CDCl₃, 250 MHz): $\delta =$ 1.70 (s, 3H, C^{3'}-CH₃), 1.91 (s, 3H, C³-CH₃), 2.48 (s, 3H, C^{5'}-CH₃), 2.52 (s, 3H, C⁵-CH₃), 5.85 (s, 1H, H_{pz}), 5.92 (s, 1H, H_{pz'}), 6.52 (s, 1H, CH), 6.72 (t, 1H, m'-py), 6.87 (t, 1H, m-py), 7.12 (m, 6H, m-PPh₃), 7.17 (m, 6H, o-PPh₃), 7.23 (m, 3H, p-PPh₃), 7.36 (t, 1H, p-py), 8.02 (d 1H, o-py), 8.94 (d, 1H, o'-py) ppm. ¹³C NMR (CDCl₃, 100.5 MHz): $\delta = 11.1$ (C^{5'}-CH₃), 11.4 (C⁵-CH₃), 12.6 (C^{3'}-CH₃), 14.9 (C³-CH₃), 69.3 (CH), 108.9 (d, C^{4'}), 109.3 (C⁴), 122.8, 122.9 (m- and m'-py), 127.4 (m-PPh₃), 128.7 (p-PPh₃), 134.1 (*p*-py), 134.1 (*o*-PPh₃), n.d. (*i*-PPh₃), 140.2 (C^{5'}), 141.6 (C⁵), 154.6 (C^{3'}), 155.2 (*o*-py), 158.6 (*o*'-py), 158.8 (C³), 168.1 (CO₂⁻) ppm. ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 49.5$ ppm. Anal. Calcd for C₃₅H₃₅ClN₅O₂PRu (725.19): C, 57.97; H, 4.86; N, 9.66. Found: C, 57.81; H, 4.99; N, 8.96.

 $[Ru(bdmpza)(O_2CMe)(PPh_3)(py)] \quad (7a). Reaction of [Ru(bdmpza)(O_2CMe)(PPh_3)] (2a) (0.278 g, 0.415 mmol) in CH_2Cl_2 (10 mL) with pyridine (0.336 g, 4.25 mmol) for 3 days according to method B afforded [Ru(bdmpza)(O_2CMe)(PPh_3)(py)] (7a) as an orange microcrystalline powder.$

Yield 0.266 g (0.355 mmol, 86%). mp 200 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1659 \text{ vs} (CO_2^-)$, 1619 s, 1567 w (C=N), 1482 m, 1464 vw, 1448 w, 1434 m, 1420 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1667$ vs (CO₂⁻), 1631 vs, 1565 w (C=N), 1481 m, 1465 vw, 1444 vw, 1434 w, 1420 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max}/nm (log ε) = 237.0 (4.32), 268.0 (3.74), 274.0 (3.76), 311.0 (3.84), 368.0 (3.81). FAB-MS (NBOH-matrix): m/z (%) = 749 (29) [M⁺], 689 (88) [M⁺ - O_2CMe], 670 (100) [M⁺ - Py], 611 (41) [M⁺ - O_2CMe - Py], 565 (29) $[M^+ - HO_2CMe - CO_2 - Py - H]$, 363 (71) $[M^+ - HO_2CMe - CO_2 - Py - H]$ $O_2CMe - Py - bdmpza$]. ¹H NMR (CDCl₃, 250 MHz): $\delta = 1.33$ (s, 3H, C^{3'}-CH₃), 1.55 (s, 3H, C³-CH₃), 1.79 (s, 3H, OAc-CH₃), 2.49 (s, 3H, C^{5'}-CH₃), 2.52 (s, 3H, C⁵-CH₃), 5.79 (s, 1H, H_{pz}), 5.85 (s, 1H, $H_{DZ'}$), 6.53 (s, 1H, CH), 6.82 (m, 2H, *m* and *m'*-py), 7.05-7.30 (m, 15H, PPh₃), 7.37 (tt, 1H, *p*-py), 8.05 (d, 1H, *o*-py), 8.90 (d, 1H, o'-py) ppm. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.32$ (s, 3H, C^{3'}-CH₃), 1.59 (s, 3H, C³-CH₃), 1.88 (br, 3H, OAc-CH₃), 2.52 (s, 3H, C5'-CH3), 2.59 (br, 3H, C5-CH3), 5.77 (s, 1H, Hpz), 5.83 (s, 1H, H_{pz}), 6.55 (s, 1H, CH), 6.84 (br, 1H, m'-py), 6.85 (br, 1H, m-py), 7.11 (m, 6H, m-PPh₃), 7.17 (m, 6H, o-PPh₃), 7.23 (t, 3H, p-PPh₃), 7.34 (t, 1H, p-py), 7.97 (br, 1H, o-py), 8.93 (br, 1H, o'-py) ppm. ¹³C NMR (CDCl₃, 62.9 MHz): $\delta = 11.2$ (C^{5'}-CH₃), 11.5 (C3'-CH3), 11.5 (C5-CH3), 14.2 (C3-CH3), 24.8 (OAc-CH3), 69.3 (CH), 108.0 (d, C^{4'}, ${}^{4}J_{CP} = 2.8$ Hz), 108.1 (C⁴), 122.6 (m'py), 123.2 (*m*-py), 127.4 (d, *m*-PPh₃, ${}^{3}J_{CP} = 8.9$ Hz), 128.7 (*p*-PPh₃), 133.7 (*p*-py), 133.9 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.5$ Hz), 135.0 (d, *i*-PPh₃, ${}^{1}J_{CP} = 38.2$ Hz), 139.9 (C^{5'}), 141.1 (C⁵), 153.9 (d, C^{3'}, ${}^{3}J_{CP}$ = 2.8 Hz), 154.6 (*o*-py), 155.5 (*o*'-py), 157.7 (C^3), 168.4 (CO_2^-),

178.0 (OAc-CO₂⁻) ppm. ¹³C NMR (CDCl₃, 100.5 MHz): $\delta = 11.2$ (C^{5′}-CH₃), 11.5 (C^{3′}-CH₃), 11.5 (C⁵-CH₃), 14.2 (C³-CH₃), 24.8 (OAc-CH₃), 69.2 (CH), 107.9 (d, C^{4′}, ⁴J_{CP} = 2.8 Hz), 108.1 (C⁴), 122.6 (m′-py), 123.2 (m-py), 127.4 (d, m-PPh₃, ³J_{CP} = 8.8 Hz), 128.7 (*p*-PPh₃), 133.7 (*p*-py), 133.9 (br, *o*-PPh₃), 134.9 (d, *i*-PPh₃, ¹J_{CP} = 38.3 Hz), 139.9 (C^{5′}), 141.1 (C⁵), 153.9 (d, C^{3′}, ³J_{CP} = 2.8 Hz), 154.4 (*o*-py), 155.4 (*o*′-py), 157.7 (C³), 168.4 (CO₂⁻), 178.1 (OAc-CO₂⁻) ppm. ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 49.7$ ppm. Anal. Calcd C₃₇H₃₈N₅O₄PRu (748.78): C, 59.35; H, 5.12; N, 9.35. Found: C, 59.28; H, 5.22; N, 9.31.

Yield 0.265 g (0.327 mmol, 92%). mp 220 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1659 \text{ vs} (CO_2^{-})$, 1636 w, 1626 w, 1618 w, 1575 m (C=N), 1568 w, 1482 m, 1464 vw, 1447 w, 1434 w, 1420 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1662$ vs (CO₂⁻), 1641 vs, 1630 vs, 1623 s, 1573 m (C=N), 1561 m, 1483 s, 1465 w, 1450 w, 1444 vw, 1437 vw, 1433 w, 1419 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max}/nm (log ε) = 235.0 (4.35), 268.0 (3.80), 274.0 (3.79), 315.0 (3.88), 361.0 (3.80). FAB-MS (NBOH-Matrix): m/z (%) = 810 (9) [M⁺], 731 (100) [M⁺ - Py], 690 (31) [M⁺ - O₂Ph], 611 (17) [M⁺ - O₂CPh - Py], 549 (60) $[M^+ - PPh_3]$, 363 (34) $[M^+ - O_2CPh - Py - bdmpza]$. ¹H NMR (CDCl₃, 600 MHz): $\delta = 1.16$ (s, 3H, C^{3'}-CH₃), 1.53 (s, 3H, C³-CH₃), 2.52 (s, 3H, C^{5'}-CH₃), 2.60 (s, 3H, C^{5'}-CH₃), 5.75 (s, 1H, H_{pz}), 5.80 (s, 1H, H_{pz}), 6.59 (s, 1H, CH), 6.91 (br, 2H, m-py), 7.10-7.50 (m, 20H, Ph and PPh₃), 7.98 (t, 1H, p-py), 8.05 (br, 1H, *o*-py), 9.12 (br, 1H, *o*'-py) ppm. ¹³C NMR (CDCl₃, 150.9 MHz): $\delta = 11.2 (C^5-CH_3), 11.5 (C^{3'}-CH_3), 11.6 (C^{5'}-CH_3), 14.4 (C^3-CH_3),$ 69.3 (CH), 107.9 (C4'), 108.1 (C4), 122.7, 123.4 (m and m'-py), 127.3 (*m*-Ph), 127.5 (d, *m*-PPh₃, ${}^{3}J_{CP} = 7.8$ Hz), 128.7 (*o*-Ph), 128.8 (p-PPh₃), 129.1 (p-Ph), 133.9 (br, p-py and o-PPh₃), 135.0 (d, i-PPh₃, ${}^{1}J_{CP} = 38.3$ Hz), 137.1 (*i*-Ph), 139.7 (C^{5'}), 140.9 (C⁵), 153.8 (C^{3'}), 154.8 (*o*-py), 155.5 (*o*'-py), 157.6 (C³), 168.5 (CO₂⁻), 171.1 (Ph-CO₂⁻) ppm. ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 50.5$ ppm. For further purification yellow microystals of 7b were obtained from a CH₂Cl₂ solution layered with a 1:1 mixture (v/v) of pentane/ diethylether. According to the ¹H NMR spectrum these crystals contained also 1 equiv CH₂Cl₂. Anal. Calcd for C₄₂H₄₀N₅O₄PRu × CH₂Cl₂ (895.79): C, 57.66; H, 4.73; N, 7.82. Found: C, 57.88; H, 4.75; N, 7.91.

 $[Ru(bdmpza)(O_2CC(O)Me)(PPh_3)(py)]$ (8a). Reaction of $[Ru(bdmpza)(O_2CC(O)Me)(PPh_3)]$ (3a) (0.267 g, 0.383 mmol) in CH₂Cl₂ (15 mL) with pyridine (0.311 g, 3.93 mmol) for 3 days according to method B afforded $[Ru(bdmpza)(O_2CC(O)Me)-(PPh_3)(py)]$ (8a) as an orange crystalline powder.

Yield 0.245 g (0.315 mmol, 82%). mp 175 °C (dec.). IR (CH₂Cl₂): $\tilde{\nu} = 1707$ m, 1662 vs (CO₂⁻), 1640 s, 1565 w (C=N), 1483 m, 1464 vw, 1448 w, 1434 m, 1421 w cm⁻¹. IR (KBr): $\tilde{\nu} = 1706$ m, 1668 vs (CO₂⁻), 1637 s, 1561 m (C=N), 1482 m, 1465 vw, 1446 w, 1436 w, 1420 w cm⁻¹. UV/vis (CH₂Cl₂): λ_{max} /nm (log ε) = 236.0 (4.36), 307.0 (3.86), 361.0 (3.81), 275.0 (3.78). FAB-MS (NBOH-matrix): m/z (%) = 776 (38) [M⁺], 689 (50) [M⁺ - O₂CC(O)Me], 611 (56) [M⁺ - O₂CC(O)Me - Py], 515 (25) [M⁺ - PPh₃], 363 (100) [M⁺ - O₂CC(O)Me - Py - bdmpza]. ¹H NMR (CDCl₃, 250 MHz): δ = 1.26, 1.47 (s, 3H, C³ and C^{3'}-CH₃), 2.18 (s, 3H, C(O)-CH₃), 2.49, 2.53 (s, 3H, C⁵ or C^{5'}-CH₃), 5.80, 5.85 (s, 1H, H_{pz} and H_{pz}), 6.55 (s, 1H, CH), 6.84 (m, 2H, *m*- and *m*'-py), 7.05-7.30 (m, 15H, PPh₃), 7.38 (t, 1H, *p*-py), 8.05, 8.93 (d, 1H, *o*- and *o*'-py) ppm. ¹³C NMR (CDCl₃, 100.5 MHz): δ = 11.2, 11.5, 11.1, (C³, C^{3'}, C⁵ and C^{5'}-CH₃), 26.6 (C(O)-CH₃), 69.3

(CH), 108.1, 108.2 (C⁴ or C^{4'}), 123.0, 123.4 (*m*- and *m'*-py), 127.6 (d, *m*-PPh₃, ${}^{3}J_{CP} = 9.0$ Hz), 128.8 (*p*-PPh₃), 133.9 (d, *o*-PPh₃, ${}^{2}J_{CP} = 10.2$ Hz), 134.0 (*p*-py), 134.6 (d, *i*-PPh₃, ${}^{1}J_{CP} = 38.9$ Hz), 140.1, 141.4 (C⁵ and C^{5'}), 154.0 (C³ and C^{3'}), 154.4, 155.5 (*o* and *o'*-py), 157.7 (C³ and C^{3'}), 168.4 (CO₂⁻), 171.1 (C(O)-CO₂⁻), 197.6 (C=O) ppm. ${}^{31}P$ NMR (CDCl₃, 161.8 MHz): $\delta = 49.7$ ppm. Anal. Calcd for C₃₈H₃₅N₅O₅PRu (776.79): C, 58.76; H, 4.93; N, 9.02. Found: C, 58.42; H, 5.20; N, 8.76.

[Ru(bdmpza)($O_2CC(O)Et$)(PPh₃)(py)] (8b). Reaction of [Ru(bdmpza)($O_2CC(O)Et$)(PPh₃)] (3b) (0.269 g, 0.378 mmol) in CH₂Cl₂ (15 mL) with pyridine (0.302 g, 3.82 mmol) for 3 days according to method B afforded [Ru(bdmpza)($O_2CC(O)Et$)-(PPh₃)(py)] (8b) as an orange crystalline powder. Crystals suitable for X-ray structure determination were obtained from a CH₂Cl₂ solution layered with *n*-hexane.

Yield 0.209 g (0.264 mmol, 70%). mp 210 °C (dec.). IR (CH₂Cl₂): $\tilde{\nu} = 1711$ w, 1661 vs (CO₂⁻), 1640 s, 1565 w (C=N), 1483 m, 1463 vw, 1448 w, 1434 m, 1420 vw cm⁻¹. IR (KBr): $\tilde{\nu} =$ 1709 m, 1664 vs (CO₂⁻), 1639 vs, 1565 m (C=N), 1482 m, 1464 vw, 1448 w, 1437 w, 1433 w, 1420 vw cm⁻¹. UV/vis (CH₂Cl₂): $\lambda_{\text{max}}/\text{nm}$ (log ε) = 236.0 (4.34), 268.0 (3.77), 275.0 (3.79), 307.0 (3.85), 362.0 (3.80). FAB-MS (NBOH-matrix): m/z (%) = 791 (33) $[M^+]$, 711 (14) $[M^+ - Py]$, 689 (100) $[M^+ - O_2CC(O)Et]$, 611 (43) $[M^+ - O_2CC(O)Et - Py]$, 529 (14) $[M^+ - PPh_3]$, 363 (48) $[M^+ - O_2CC(O)Et - Py - bdmpza]$. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.02$ (t, 3H, CH₂-CH₃, ${}^{3}J_{\text{HH}} = 7.3$ Hz), 1.26 (s, 3H, C^{3'}-CH₃), 1.48 (s, 3H, C³-CH₃), 2.48 (s, 3H, C^{5'}-CH₃), 2.52 (s, 3H, C⁵-CH₃), 2.58 (q, 2H, CH₂-CH₃, ${}^{3}J_{HH} = 7.3$ Hz), 5.80 (s, 1H, H_{pz}), 5.85 (s, 1H, H_{pz'}), 6.55 (s, 1H, CH), 6.83 (m, 2H, *m*- and *m*'-py), 7.05-7.30 (m, 15H, PPh₃), 7.36 (t, 1H, *p*-py), 8.05 (d, 1H, *o*-py), 8.96 (d, 1H, o'-py) ppm. ¹³C NMR (CDCl₃, 100.5 MHz): $\delta = 7.45$ (CH₂-CH₃), 11.2 (C^{5'}-CH₃), 11.5 (C⁵-CH₃), 11.6 (C^{3'}-CH₃), 14.1 (C³-CH₃), 32.0 (CH₂), 69.2 (CH), 108.0 (d, $C^{4'}$, ${}^{4}J_{CP} = 2.8$ Hz), 108.2 (C⁴), 123.0, 123.3 (*m*- and *m*'-py), 127.5 (d, *m*-PPh₃, ${}^{3}J_{CP} = 9.0$ Hz), 128.8 $(p-PPh_3)$, 134.0 (p-py), 133.9 (d, $o-PPh_3$, ${}^2J_{CP} = 8.8$ Hz), 134.6 (d, *i*-PPh₃, ${}^{1}J_{CP} = 39.1$ Hz), 140.1 (C^{5'}), 141.4 (C⁵), 153.9 (d, C^{3'}, ${}^{3}J_{CP}$ = 2.4 Hz), 154.3 (*o*-py), 155.5 (*o*'-py), 157.7 (C³), 168.4 (CO₂⁻), 171.6 (C(O)-CO₂⁻), 200.3 (C=O) ppm. ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 49.8$ ppm. Anal. Calcd for C₃₉H₄₀N₅O₅PRu (790.82): C, 59.23; H, 5.10; N, 8.86. Found: C, 58.62; H, 5.31; N, 8.75.

 $[Ru(bdmpza)(O_2C(CO)Ph)(PPh_3)(py)] (8c). Reaction of [Ru(bdmpza)(O_2CC(O)Ph)(PPh_3)] (3c) (0.300 g, 0.395 mmol) in CH_2Cl_2 (15 mL) with pyridine (0.314 g, 3.97 mmol) for 3 days according to method B afforded [Ru(bdmpza)(O_2CC(O)Ph)-(PPh_3)(py)] (8c) as an orange crystalline powder.$

Yield 0.224 g (0.267 mmol, 68%). mp 205 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1662 \text{ vs} (CO_2^-)$, 1634 s, 1597 vw, 1565 w (C=N), 1483 m, 1463 vw, 1448 w, 1434 w, 1421 vw cm⁻¹. IR (KBr): $\tilde{\nu} =$ 1665 vs (CO₂⁻), 1640 vs, 1598 vw, 1564 m (C=N), 1482 m, 1464 vw, 1447 w, 1436 vw, 1433 w, 1420 vw cm⁻¹. UV/vis (CH₂Cl₂): $\lambda_{\text{max}}/\text{nm}$ (log ε) = 236.0 (4.44), 362.0 (3.76). FAB-MS (NBOHmatrix): m/z (%) = 839 (26) [M⁺], 759 (26) [M⁺ – Py], 690 (54) $[M^+ - O_2CC(O)Ph], 611 (100) [M^+ - O_2CC(O)Ph - Py], 567$ (43) $[M^+ - PPh_3]$, 363 (71) $[M^+ - O_2CC(O)Ph - Py - bdmpza]$. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.40$ (s, 3H, C^{3'}-CH₃), 1.63 (s, 3H, C³-CH₃), 2.51 (s, 3H, C^{5'}-CH₃), 2.55 (s, 3H, C⁵-CH₃), 5.84 (s, 1H, H_{pz}), 5.90 (s, 1H, H_{pz}'), 6.57 (s, 1H, CH), 6.82 (m, 1H, m'-py), 6.86 (m, 1H, m-py), 7.04 (m, 6H, m-PPh₃), 7.10 (m, 3H, p-PPh₃), 7.20 (m, 6H, o-PPh₃), 7.34 (m, 2H, m-Ph), 7.37 (m, 1H, p-py), 7.50 (m, 1H, p-Ph), 8.02 (m, 2H, o-Ph), 8.05 (d, 1H, o-py), 8.90 (d, 1H, o'-py) ppm. ¹³C NMR (CDCl₃, 100.5 MHz): $\delta = 11.2$ (C^{5'}-CH₃), 11.6 (C⁵-CH₃), 12.0 (C³-CH₃), 14.6 (C^{3'}-CH₃), 69.2 (CH), 108.2 (d, C^{4'}, ${}^{4}J_{CP} = 2.7$ Hz), 108.3 (C⁴), 123.0 (m'-py), 123.4 (mpy), 127.5 (d, *m*-PPh₃, ${}^{3}J_{CP} = 8.9$ Hz), 128.1 (*p*-Ph), 128.8 (*p*-PPh₃), 130.0 (*o*-Ph), 132.7 (*i*-Ph), 133.9 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.1$ Hz), 134.1 (*p*-py), 134.4 (*p*-Ph), 134.5 (d, *i*-PPh₃, ${}^{1}J_{CP} = 39.1$ Hz), 140.2 (C^{5'}), 141.5 (C⁵), 154.3 (C^{3'}), 154.3 (*o*-py), 155.6 (*o'*-py), 157.8 (C³), 168.4 (CO₂⁻), 172.5 (C(O)-CO₂⁻), 190.4 (C=O) ppm. ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 49.8$ ppm. Anal. Calcd for C₄₃H₄₀N₅O₅PRu (838.86): C, 61.57; H, 4.81; N, 8.35. Found: C, 61.37; H, 4.89; N, 8.40.

Method C: General Procedure for Complex Syntheses with Gaseous CO, SO₂, and NO. A solution of the acetato, benzoato, or benzoylformato complexes 2a, 2b, or 3c in dichloromethane was flushed with gaseous CO, SO₂, or NO under stirring at ambient temperature. The progress of the reactions was monitored by IR spectroscopy. After the reaction was completed, the solvent was reduced in vacuo, and the product was precipitated with *n*-pentane. The precipitate was filtered off and dried in vacuo.

 $[Ru(bdmpza)(O_2CMe)(CO)(PPh_3)] \quad (9a). Reaction of [Ru(bdmpza)(O_2CMe)(PPh_3)] (2a) (275 mg, 0.411 mmol) in CH_2Cl_2 (100 mL) with CO for 2 h according to method C afforded the product [Ru(bdmpza)(O_2CMe)(CO)(PPh_3)] (9a) as a yellow powder.$

Yield 325 mg (0.400 mmol, 97%). mp 150 °C (dec.). IR (CH₂Cl₂): $\tilde{\nu} = 1977$ vs (CO), 1669 vs (CO₂⁻), 1624 w, 1602 vw, 1564 w (C=N), 1485 vw, 1465 vw, 1437 m, 1419 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1967$ vs (CO), 1672 vs (CO₂⁻), 1620 m, 1600 vw, 1560 m (C=N), 1481 vw, 1462 vw, 1434 m, 1420 vw cm⁻¹. UV/ vis (CH₂Cl₂): λ_{max} (log ε) = 245.0 (4.17). FAB MS (NBOH): m/z $(\%) = 698 (34) [M^+], 639 (100) [M^+ - O_2CMe], 565 (12) [M^+ - O_2CM$ $HO_2CMe - CO_2 - CO - H$], 391 (41) [M⁺ - bdmpzaH - O_2CMe], 363 (35) [M⁺ – bdmpzaH – O_2CMe – CO]. ¹H NMR $(CD_2Cl_2, 600 \text{ MHz}): \delta = 1.55 \text{ (s, 3H, OAc-CH}_3), 1.91 \text{ (s, 3H, C}^3-$ CH₃), 2.33 (s, 3H, C^{3'}-CH₃), 2.46 (s, 3H, C^{5'}-CH₃), 2.55 (s, 3H, C⁵-CH₃), 6.03 (s, 1H, H_{pz}), 6.04 (s, 1H, H_{pz'}), 6.57 (s, 1H, CH), 7.32 (vt, 6, m-PPh₃), 7.40 (vt, 9, o- and p-PPh₃). ¹³C NMR (CD₂Cl₂, 150.9 MHz): $\delta = 11.3 (C^{5'}-CH_3), 11.5 (C^{5}-CH_3), 13.7 (C^{3}-CH_3),$ 14.0 (C^{3'}-CH₃), 22.9 (OAc-CH₃), 69.3 (CH), 108.6 (C^{4'}), 109.3 (C⁴), 128.4 (d, *m*-PPh₃, ${}^{3}J_{CP} = 9.8$ Hz), 130.4 (d, *p*-PPh₃), 133.1 (d, *i*-PPh₃, ${}^{1}J_{CP} = 46.4$ Hz), 134.0 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.9$ Hz), 142.1 (C5'), 142.9 (C5), 154.6 (C3'), 155.9 (C3), 166.3 (CO2-), 177.3 (OAc- CO_2^{-}), 205.3 (d, CO, ${}^{2}J_{CP} = 19.8$ Hz). ${}^{31}P$ NMR (CDCl₃, 161.8 MHz): $\delta = 43.3$. Anal. Calcd for C₃₃H₃₃N₄O₅PRu (697.69): C, 56.81; H, 4.77; N, 8.03. Found: C, 57.25; H, 4.86; N, 7.91.

 $[Ru(bdmpza)(O_2CPh)(CO)(PPh_3)] \quad (9b). Reaction of [Ru(bdmpza)(O_2CPh)(PPh_3)] (2b) (341 mg, 0.466 mmol) in CH_2Cl_2 (100 mL) with CO for 1 h according to method C afforded [Ru(bdmpza)(O_2CPh)(CO)(PPh_3)] (9b) as a yellow powder.$

Yield 323 mg (0.425 mmol, 91%). mp 170 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1978$ vs (CO), 1669 vs (CO_2^{-}) , 1636 w, 1616 w, 1576 w, 1564 w (C=N), 1485 vw, 1465 vw, 1447 vw, 1436 m, 1419 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1953$ vs (CO), 1670 vs (CO₂⁻), 1636 w, 1617 w, 1576 vw, 1565 w (C=N), 1481 vw, 1463 vw, 1446 vw, 1437 m, 1432 m, 1420 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max} $(\log \varepsilon) = 246.0$ (4.21). FAB MS (NBOH): m/z (%) = 760 (49) $[M^+]$, 732 (25) $[M^+ - CO]$, 638 (100) $[M^+ - HO_2CPh]$, 565 (11) $[M^+ - HO_2CPh - CO_2 - CO - H], 363 (23) [M^+ - bdmpzaH]$ $- O_2CPh - CO$]. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.95$ (s, 3H, C³-CH₃), 2.24 (s, 3H, C^{3'}-CH₃), 2.45 (s, 3H, C^{5'}-CH₃), 2.56 (s, 3H, C⁵-CH₃), 5.94 (s, 1H, H_{pz}'), 6.02 (s, 1H, H_{pz}), 6.58 (s, 1H, CH), 7.10-7.20 (m, 8H, m-Ph and m-PPh₃), 7.23 (d, 1H, p-Ph), 7.29 (vt, 3H, p-PPh₃), 7.44 (vt, 6H, o-PPh₃), 7.55 (d, 2H, o-Ph). ¹³C NMR (CDCl₃, 100.5 MHz): $\delta = 11.1$ (C^{5'}-CH₃), 11.3 (C⁵-CH₃), 13.8 ($C^{3'}$ -CH₃), 13.9 (C^{3} -CH₃), 68.9 (CH), 108.3 (d, $C^{4'}$, ${}^{4}J_{CP} =$ 2.6 Hz), 108.8 (C⁴), 127.0 (*m*-Ph), 128.1 (d, *m*-PPh₃, ${}^{3}J_{CP} = 9.9$ Hz), 129.2 (o-Ph), 129.4 (p-Ph), 129.8 (d, p-PPh₃, ${}^{4}J_{CP} = 2.2$ Hz), 132.6 (d, *i*-PPh₃, ${}^{1}J_{CP} = 46.9$ Hz), 133.7 (d, *o*-PPh₃, ${}^{2}J_{CP} = 10.0$ Hz), 135.4 (*i*-Ph), 140.9 (C^{5'}), 141.7 (C⁵), 154.5 (C^{3'}), 155.4 (C³), 166.3 (CO₂⁻), 172.6 (Ph-CO₂⁻), 204.2 (d, CO, ${}^{2}J_{CP} = 21.2$ Hz). ${}^{31}P$ NMR (CDCl₃, 161.8 MHz): $\delta = 43.6$. Anal. Calcd for C₃₈H₃₅N₄O₅PRu (759.76): C, 60.07; H, 4.64; N, 7.37. Found: C, 59.98; H, 4.79; N, 7.32.

Yield 678 mg (0.924 mmol, 95%). mp 180 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1673$ vs (CO_2^-) , 1566 w (C=N), 1483 vw, 1465 vw, 1436 m, 1419 vw, 1395 vw, 1350 vw, 1313 vw, 1284 m, 1128 s, 1094 w, 1091 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1672$ vs (CO₂⁻⁾, 1566 w (C=N), 1484 vw, 1463 vw, 1437 m, 1420 w, 1374 vw, 1352 vw, 1310 vw, 1282 m, 1128 s, 1093 w, 1089 vw cm⁻¹. UV/ vis (CH₂Cl₂): λ_{max} (log ε) = 246.0 (4.26). FAB MS (NBOH): m/z $(\%) = 735 (30) [M^+ + H], 670 (100) [M^+ - SO_2], 611 (92) [M^+$ - SO₂ - O₂CMe], 565 (27) [M⁺ - SO₂ - CO₂ - HO₂CMe -H], 363 (20) [M⁺ - bdmpzaH - SO₂ - O₂CMe]. ¹H NMR (CDCl₃, 250 MHz): $\delta = 1.77, 1.92, 2.12, 2.43, 2.48$ (s, 15H, C^{3,3',5,5'}-CH₃, OAc-CH_3), 5.79, 5.92 (s, 2H, H_{pz} and $H_{\text{pz}'}),$ 6.54 (s, 1H, CH), 7.00–7.65 (m, 15H, PPh₃). ¹³C NMR (CDCl₃, 100.5 MHz): $\delta =$ 11.5 (C5'-CH3), 11.6 (C5-CH3), 13.7 (C3'-CH3), 14.0 (C3-CH3), 22.8 (OAc-CH₃), 69.3 (CH), 109.3 (C⁴), 109.7 (d, C^{4'}, ${}^{4}J_{CP} = 2.7$ Hz), 127.9 (d, *m*-PPh₃, ${}^{3}J_{CP} = 7.1$ Hz), 129.7 (d, *p*-PPh₃), 134.8 (d, o-PPh₃, ${}^{1}J_{CP} = 9.4$ Hz), n.d. (*i*-PPh₃), 141.1 (d, C^{5'}, ${}^{5}J_{CP} = 1.3$ Hz), 142.8 (C⁵), 155.0 (d, C^{3'}, ${}^{3}J_{CP} = 2.2 \text{ Hz}$), 156.4 (C³), 167.0 (CO₂⁻), 179.7 (OAc-CO₂⁻). ³¹P NMR (CDCl₃, 161.8 MHz): δ = 45.4. Anal. Calcd for C₃₂H₃₃N₄O₆PRuS (733.74): C, 52.38; H, 4.53; N, 7.64. Found: C, 52.41; H, 4.70; N, 7.73.

 $[Ru(bdmpza)(O_2CPh)(PPh_3)(SO_2)]$ (10b). Reaction of $[Ru(bdmpza)(O_2CPh)(PPh_3)]$ (2b) (638 mg, 0.872 mmol) in CH₂Cl₂ (80 mL) with gaseous SO₂ for 2 h according to method C afforded $[Ru(bdmpza)(O_2CPh)(SO_2)(PPh_3)]$ (10b) as a yellow powder.

Yield 642 mg (0.807 mmol, 92%). mp 180 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1673$ vs (CO_2^{-}) , 1567 w (C=N), 1507 w, 1484 vw, 1464 vw, 1435 w, 1420 vw, 1395 m, 1349 vw, 1313 vw, 1286 w, 1129 s, 1094 w, 1090 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1671$ vs (CO₂⁻), 1561 w (C=N), 1509 w, 1484 vw, 1461 vw, 1435 w, 1416 vw, 1397 m, 1346 vw, 1283 m, 1125 s, 1093 w cm⁻¹. UV/vis (CH₂Cl₂): $\lambda_{\text{max}}/\text{nm}$ (log ε) = 247.0 (4.39). FAB MS (NBOH): m/z (%) = 797 (28) $[M^+ + H]$, 732 (100) $[M^+ - SO_2]$, 611 (93) $[M^+ - SO_2 - M^+]$ O₂CPh], 566 (19) [M⁺ - SO₂ - CO₂ - HOAc]. ¹H NMR (CD₂Cl₂, 600 MHz): $\delta = 1.98$ (s, 3H, C^{3'}-CH₃), 2.02 (s, 3H, C³-CH₃), 2.45 (s, 3H, C^{5'}-CH₃), 2.52 (s, 3H, C⁵-CH₃), 5.88 (s, 1H, H_{pz}), 5.93 (s, 1H, H_{pz'}), 6.57 (s, 1H, CH), 7.19 (m, 6H, m-PPh₃), 7.33 (m, 5H, p-PPh₃, m-Ph), 7.39 (m, 6H, o-PPh₃), 7.48 (m, 1H, p-Ph), 7.64 (d, 2H, *o*-Ph). ¹³C NMR (CD₂Cl₂, 150.9 MHz): $\delta = 11.5$ (C^{5'}-CH₃), 11.4 (C6-CH₃), 13.4 (C^{3'}-CH₃), 14.2 (C³-CH₃), 69.4 (CH), 109.4 (C⁴), 109.6 (C^{4'}), 127.9 (d, ${}^{3}J_{CP} = 9.7$ Hz, *m*-PPh₃), 128.4 (*p*-PPh₃), 129.8 (broad, i-PPh₃), 130.2 (o- and m-Ph), 132.7 (p-Ph), 134.8 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.2$ Hz), 142.0 (d, C^{5'}), 143.6 (C⁵), 155.2 (d, C^{3'}), 156.6 (C³), 166.8 (CO₂⁻), 175.4 (Ph-CO₂⁻). ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 44.6$. Anal. Calcd for C₃₇H₃₅N₄O₆PRuS (795.82): C, 55.84; H, 4.43; N, 7.04. Found: C, 55.49; H, 4.49; N, 6.73.

 $[Ru(bdmpza)(O_2CC(O)Ph)(NO)(PPh_3)]^+$ (12). Reaction of $[Ru(bdmpza)(O_2CC(O)Ph)(PPh_3)]$ (3c) (828 mg, 1.09 mmol) in THF (80 mL) with gaseous NO for 1.5 h according to method C afforded, after precipitation with diethylether, the product $[Ru(bdmpza)(O_2CC(O)Ph)(NO)(PPh_3)]^+$ (12) as a pale red solid.

Yield 848 mg. mp 55–60 °C (dec.). IR (CH₂Cl₂): $\tilde{\nu} = 1911$ vs (NO), 1698 s, 1645 m, 1597 vw, 1562 w (C=N), 1483 w, 1463 vw, 1450 vw, 1439 m, 1436 m, 1418 vw cm⁻¹. IR (KBr): $\tilde{\nu} =$ 1906 vs (NO), 1688 vs (CO₂⁻), 1662 s (CO₂⁻), 1596 vw, 1561 m (C=N), 1482 vw, 1465 vw, 1437 m, 1420 vw cm⁻¹. UV/vis $(CH_2Cl_2): \lambda_{max}/nm = 237.0, 268.0.$ FAB MS (NBOH): m/z (%) = 791 (100) $[M^+]$, 641 (40) $[M^+ - O_2CC(O)Ph]$, 363 (17) $[M^+ - O_2CC(O)Ph]$ bdmpza – O₂CC(O)Ph – NO]. ¹H NMR (CDCl₃, 250 MHz): δ = 1.95, 2.36, 2.57, 2.62 (s, 12H, C^{3,3',5,5'}-CH₃), 6.22, 6.24 (s, 2H, H_{pz,pz}), 6.71 (s, 1H, CH), 7.30-7.70 (m, 18H, Ph and PPh₃), 7.99 (vt, 2H, *o*-Ph). ¹³C NMR (CDCl₃, 62.9 MHz): $\delta = 11.1, 11.5, 13.9,$ 14.3 ($C^{3,3',5,5'}$ -CH₃), 68.2 (CH), 110.1 (d, C⁴ or C^{4'}, ⁴J_{CP} = 3.2 Hz), 111.5 (C⁴ or C^{4'}), 124.8 (d, *i*-PPh₃, ${}^{1}J_{CP} = 54.5$ Hz), 128.9, 129.8 (d, *m*-PPh₃, ${}^{3}J_{CP} = 11.3$ Hz), 129.9, 133.1, 133.2, 133.6 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.8$ Hz), 134.7, 145.3 (d, C⁵ or C^{5'}, ${}^{5}J_{CP} = 1.3$ Hz), 146.8 (C⁵ or C^{5'}), 154.3 (d, C³ or C^{3'}, ${}^{3}J_{CP} = 2.2$ Hz), 158.3 (C³ or C^{3'}), 163.0 (CO2⁻), 169.4 (CO2⁻), 186.7 (C=O). ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 24.2$. Counterion unspecified.

Method D: General Procedure for the Syntheses of NO Complexes from [NO]BF₄. A solution of the carboxylato or 2-oxocarboxylato complexes 2a, 2b, or 3a-c in dichloromethane was reacted with [NO]BF₄. After 0.5 to 1 h the reaction was completed, the solvent was reduced in vacuo, and the product was precipitated with diethylether. The precipitate was filtered off and dried in vacuo.

 $[Ru(bdmpza)(O_2CMe)(NO)(PPh_3)]BF_4$ (13a). Reaction of $[Ru(bdmpza)(O_2CMe)(PPh_3)]$ (2a) (533 mg, 0.796 mmol) with $[NO]BF_4$ (175 mg, 1.50 mmol) in CH₂Cl₂ (40 mL) at ambient temperature afforded after 30 min according to method D the product $[Ru(bdmpza)(O_2CMe)(NO)(PPh_3)]BF_4$ (13a) as a pale red powder.

Yield 593 mg (0.754 mmol, 95%). mp 175 °C (dec.). IR (CH₂Cl₂): $\tilde{\nu} = 1912$ vs (NO), 1698 s (CO₂⁻), 1635 m (CO₂⁻), 1612 vw, 1562 m (C=N), 1483 w, 1465 w, 1439 m, 1415 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1897$ vs (N–O), 1690 vs (CO₂⁻), 1637 m (CO₂⁻), 1612 vw, 1561 m (C=N), 1483 w, 1462 w, 1438 m, 1420 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max} /nm (log ε) = 237.0 (4.32), 273.0 (4.31). FAB MS (NBOH): m/z (%) = 700 (100) [M⁺], 641 (33) [M⁺ -O₂CMe]. ¹H NMR (CDCl₃, 250 MHz): $\delta = 1.94$ (s, 3H, C³-CH₃), 2.07 (s, 3H, OAc-CH₃), 2.24 (s, 3H, C^{3'}-CH₃), 2.55 (s, 3H, C^{5'}-CH₃), 2.63 (s, 3H, C⁵-CH₃), 6.23 (s, 1H, H_{pz}), 6.46 (s, 1H, H_{pz}), 6.63 (s, 1H, CH), 7.36 (m, 6H, o-PPh₃), 7.50 (m, 6H, m-PPh₃), 7.63 (m, 3H, *p*-PPh₃). ¹³C NMR (CDCl₃, 62.9 MHz): $\delta = 11.0$ (C5'-CH3), 11.4 (C5-CH3), 13.2 (C3'-CH3), 14.1 (C3-CH3), 22.1 (OAc-CH₃), 68.2 (CH), 110.1 (d, $C^{4'}$, ${}^{4}J_{CP} = 2.9$ Hz), 111.8 (C⁴), 125.0 (d, *i*-PPh₃, ${}^{1}J_{CP} = 54.1$ Hz), 129.6 (d, *m*-PPh₃, ${}^{3}J_{CP} = 10.8$ Hz), 133.1 (*p*-PPh₃), 133.4 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.8$ Hz), 145.0 (d, $C^{5'}$, ${}^{5}J_{CP} = 1.7 \text{ Hz}$), 146.7 (C⁵), 154.2 (d, $C^{3'}$, ${}^{3}J_{CP} = 2.0 \text{ Hz}$), 158.2 (C³), 163.3 (CO₂⁻), 176.8 (OAc-CO₂⁻). ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 23.5$. Anal. Calcd for C₃₂H₃₃BF₄N₅O₅PRu (786.49): C, 48.87; H, 4.23; N, 8.90. Found: C, 48.45; H, 4.22; N, 8.99.

 $[Ru(bdmpza)(O_2CPh)(NO)(PPh_3)]BF_4$ (13b). Reaction of $[Ru(bdmpza)(O_2CPh)(PPh_3)]$ (2b) (355 mg, 0.485 mmol) with $[NO]BF_4$ (107 mg, 0.916 mmol) in CH₂Cl₂ (30 mL) for 1 h according to method D afforded $[Ru(bdmpza)(O_2CPh)(NO)-(PPh_3)]BF_4$ (13b) as a pale red powder.

Yield 390 mg (0.460 mmol, 95%). mp 130 °C (dec). IR (CH₂Cl₂): $\tilde{\nu} = 1912$ vs (NO), 1696 s (CO₂⁻), 1635 w (CO₂⁻), 1616 vw, 1561 m (C=N), 1483 w, 1465 w, 1450 vw, 1437 m, 1420 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1903$ vs (NO), 1692 vs (CO₂⁻), 1632 w (CO₂⁻), 1562 m (C=N), 1483 w, 1467 w, 1463 w, 1450 vw, 1439 m, 1435 m, 1416 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max}/nm (log ε) = 239.0 (4.45), 273.0 (4.29). FAB MS (NBOH): m/z (%) = 763 (100) [M⁺ + H], 733 (11) [M⁺ + H - NO], 641 (19) [M⁺ - O₂CPh]. ¹H NMR (CDCl₃, 250 MHz): δ = 1.99 (s, 3H, C³-CH₃), 2.13 (s, 3H, C^{3'}-CH₃), 2.59 (s, 3H, C^{5'}-CH₃), 2.70 (s, 3H, C⁵-CH₃), 6.19 (s, 1H, H_{pz'}), 6.46 (s, 1H, H_{pz}), 6.76 (s, 1H, CH), 7.30-7.80 (m, 18H, Ph and PPh₃), 7.85 (d, 2H, *o*-Ph). ¹³C NMR (CDCl₃, 100 MHz): δ = 11.0 (C^{5'}-CH₃), 11.5 (C⁵-CH₃), 13.0 (C^{3'}-CH₃), 14.1 (C³-CH₃), 68.2 (CH), 110.2 (d, C^{4'}, ⁴J_{CP} = 3.1 Hz), 111.5 (C⁴), 125.1 (d, *i*-PPh₃, ¹J_{CP} = 54.7 Hz), 128.5 (*p*-PPh₃), 129.5 (d, *m*-PPh₃, ³J_{CP} = 11.4 Hz), 129.7 (*o*-Ph), 132.2 (*i*-Ph), 133.0 (*m*-Ph), 133.5 (d, *o*-PPh₃, ²J_{CP} = 9.7 Hz), 134.0 (*p*-Ph), 145.1 (d, C^{5'}, ⁵J_{CP} = 2.0 Hz), 146.9 (C⁵), 154.2 (d, C^{3'}, ³J_{CP} = 2.0 Hz), 157.6 (C³), 163.6 (CO₂⁻), 172.6 (Ph-CO₂⁻). ³¹P NMR (CDCl₃, 161.8 MHz): δ = 23.3. Anal. Calcd for C₃₇H₃₅BF₄N₅O₅PRu (848.56): C, 52.37; H, 4.16; N, 8.25. Found: C, 51.94; H, 4.28; N, 8.35.

 $[Ru(bdmpza)(O_2CC(O)Me)(NO)(PPh_3)]BF_4 (14a). Reaction of [Ru(bdmpza)(O_2CC(O)Me)(PPh_3)] (3a) (480 mg, 0.688 mmol) with [NO]BF_4 (166 mg, 1.42 mmol) in CH_2Cl_2 (30 mL) for 1 h at 40 °C afforded according to method D the product [Ru(bdmpza)(O_2CC-(O)Me)(NO)(PPh_3)]BF_4 (14a) as a pale red powder.$

Yield 468 mg (0.575 mmol, 84%). mp 125 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1912$ vs (NO), 1706 s (CO_2^{-}) , 1653 m (CO_2^{-}) , 1560 m (C=N), 1483 w, 1465 w, 1437 m, 1419 vw cm⁻¹. IR (KBr): $\tilde{\nu}$ = 1904 vs (NO), 1692 vs (CO_2^-), 1650 m (CO_2^-), 1562 m (C=N), 1484 w, 1467 w, 1462 w, 1439 m, 1421 vw, 1416 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max}/nm (log ε) = 237.0 (4.36), 276.0 (4.29). FAB MS (NBOH): m/z (%) = 729 (100) [M⁺ + H], 641 $(52) [M^+ - O_2CC(O)Me], 363 (21) [M^+ - bdmpza - O_2CC(O)Me]$ - NO]. ¹H NMR (CDCl₃, 250 MHz): $\delta = 2.01$ (s, 3H, C³-CH₃), 2.24 (s, 3H, C^{3'}-CH₃), 2.31 (s, 3H, C(O)-CH₃), 2.57 (s, 3H, C^{5'}-CH₃), 2.64 (s, 3H, C⁵-CH₃), 6.26 (s, 1H, H_{pz}), 6.32 (s, 1H, H_{pz}), 6.73 (s, 1H, CH), 7.38 (m, 6H, o-PPh₃), 7.49 (m, 6H, m-PPh₃), 7.64 (m, 3H, *p*-PPh₃). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 11.1$ (C^{5'}-CH₃), 11.5 (C⁵-CH₃), 13.5 (C^{3'}-CH₃), 14.2 (C³-CH₃), 27.6 (C(O)-CH₃), 68.1 (CH), 110.3 (d, C^{4'}, ${}^{4}J_{CP} = 3.0$ Hz), 111.6 (C⁴), 124.8 (d, *i*-PPh₃, ${}^{1}J_{CP} = 54.5$ Hz), 129.7 (d, *m*-PPh₃, ${}^{3}J_{CP} = 11.4$ Hz), 133.2 (*p*-PPh₃), 133.5 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.8$ Hz), 145.4 (d, C^{5'}, ${}^{5}J_{CP} = 1.7$ Hz), 147.0 (C⁵), 154.2 (d, C^{3'}, ${}^{3}J_{CP} = 2.1$ Hz), 158.2 (C³), 163.3 (CO₂⁻), 168.3 (C(O)-CO₂⁻), 192.9 (C=O). ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 24.1$. Anal. Calcd for C₃₃H₃₃BF₄N₅O₆-PRu (814.50): C, 48.66; H, 4.08; N, 8.60. Found: C, 48.04; H, 4.20; N, 8.77.

 $\label{eq:constraint} \begin{array}{l} [Ru(bdmpza)(O_2CC(O)Et)(NO)(PPh_3)]BF_4 (14b). \mbox{ Reaction of} \\ [Ru(bdmpza)(O_2CC(O)Et)(PPh_3)] (3b) (450 \mbox{ mg}, 0.632 \mbox{ mmol}) \mbox{ with} \\ [NO]BF_4 (151 \mbox{ mg}, 1.29 \mbox{ mmol}) \mbox{ in } CH_2Cl_2 (50 \mbox{ mL}) \mbox{ for } 1 \mbox{ h at } 40 \mbox{ } ^{\circ}C \mbox{ according to method D afforded the product } [Ru(bdmpza)(O_2-CC(O)Et)(NO)(PPh_3)]BF_4 (14b) \mbox{ as a pale red powder.} \end{array}$

Yield 500 mg (0.603 mmol, 95%). mp 120 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1911$ vs (NO), 1670 s (CO_2^{-}) , 1653 m (CO_2^{-}) , 1561 m (C=N), 1483 w, 1462 w, 1437 m, 1419 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1904 \text{ vs}$ (NO), 1701 vs (CO₂⁻), 1649 s (CO₂⁻), 1561 m (C=N), 1484 w, 1462 w, 1438 m, 1421 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max} / nm (log ε) = 237.0 (4.37), 276.0 (4.31). FAB MS (NBOH): m/z $(\%) = 743 (100) [M^+ + H], 641 (48) [M^+ - O_2CC(O)Et], 566$ (21) $[M^+ - O_2CC(O)Et - CO_2 - NO]$, 363 (22) $[M^+ - bdmpza$ $- O_2 CC(O) Et - NO$]. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.08$ (t, 3H, CH₂-CH₃, ${}^{3}J_{\text{HH}} = 7.2$ Hz), 2.01 (s, 3H, C³-CH₃), 2.25 (s, 3H, $C^{3'}$ -CH₃), 2.56 (s, 3H, $C^{5'}$ -CH₃), 2.64 (s, 3H, C^{5} -CH₃), 2.71 (dq, 1H, CH₂, ${}^{2}J_{\text{HH}} = 19.1$ Hz, ${}^{3}J_{\text{HH}} = 7.2$ Hz), 2.76 (dq, 1H, CH₂, ${}^{2}J_{\text{HH}}$ = 19.1 Hz, ${}^{3}J_{\text{HH}}$ = 7.2 Hz), 6.27 (s, 2H, H_{pz}), 6.32 (s, 2H, H_{pz}), 6.72 (s, 1H, CH), 7.37 (m, 6H, o- or m-PPh₃), 7.49 (m, 6H, o- or *m*-PPh₃), 7.63 (m, 3H, *p*-PPh₃). ¹³C NMR (CDCl₃, 100 MHz): $\delta =$ 7.00 (CH₂-CH₃), 11.1 (C^{5'}-CH₃), 11.5 (C⁵-CH₃), 13.6 (C^{3'}-CH₃), 14.2 (C³-CH₃), 33.6 (C(O)-CH₂), 68.1 (CH), 110.2 (d, C^{4'}, ${}^{4}J_{CP} =$

Table 1. Structure Determination Details of Compounds 4, 5a, 7a, and 8b

	4	5a	7a	8b
empirical formula	$C_{32}H_{33}CIN_5O_2PRu$	$C_{34}H_{36}N_5O_4PRu$	$C_{37}H_{38}N_5O_4PRu$	$C_{39}H_{40}N_5O_5PRu$
formula weight	856.98	880.57	748.76	875.73
space group (No.), Z	$P2_1/a$ (14), 4	$P\bar{1}$ (2), 2	$P2_1/c$ (14), 4	$P\bar{1}$ (2), 2
a [Å]	17.715(4)	9.792(4)	11.046(3)	10.403(14)
b [Å]	10.9196(11)	12.224(5)	17.400(4)	14.176(10)
<i>c</i> [Å]	20.288(4)	16.944(6)	17.876(4)	14.692(19)
α [°]	90	88.22(4)	90	87.39(10)
β [°]	110.040(9)	75.73(7)	98.58(2)	73.93(13)
γ [°]	90	85.50(4)	90	74.72(9)
V [Å ³]	3686.8(11)	1959.3(13)	3397.3(14)	2008(4)
θ [°]	2.14-26.98	1.24-27.49	1.64 - 24.07	2.04-26.98
μ (Mo K α) [mm ⁻¹]	0.87	0.758	0.557	0.613
$D_{\rm c} [{\rm g} {\rm cm}^{-3}]$	1.544	1.493	1.464	1.449
T [K]	200(2)	200(2)	233(2)	123(2)
reflections collected	8269	9271	10482	9208
indep. reflections	8001	8965	5374	8732
obs. refl. $(\geq 2\sigma(I))$	5962	6605	3327	6925
$R_1^{a}, w R_2^{b}$ (obs.)	0.0441, 0.1015	0.0713, 0.1937	0.0361, 0.0694	0.0469, 0.1076
R_1^a , wR_2^b (overall)	0.0747, 0.1085	0.1032, 0.2088	0.0933, 0.0782	0.0688, 0.1169

 ${}^{a}R_{1} = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|. {}^{b}wR_{2} = \{\sum [w(F_{0}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{0}^{2})^{2}] \}^{1/2}.$

3.1 Hz), 111.7 (C⁴), 124.8 (d, *i*-PPh₃, ${}^{1}J_{CP} = 55.4$ Hz), 129.7 (d, *m*-PPh₃, ${}^{3}J_{CP} = 11.4$ Hz), 133.2 (*p*-PPh₃), 133.5 (d, *o*-PPh₃, ${}^{2}J_{CP} =$ 9.8 Hz), 145.3 (d, C^{5′}, ${}^{5}J_{CP} = 2.1$ Hz), 147.0 (C⁵), 154.2 (d, C^{3′}, ${}^{3}J_{CP} = 2.1$ Hz), 158.2 (C³), 163.4 (CO₂⁻), 168.8 (C(O)-CO₂⁻), 196.0 (C=O). ${}^{31}P$ NMR (CDCl₃, 161.8 MHz): $\delta = 24.0$. Anal. Calcd for C₃₄H₃₅BF₄N₅O₆PRu (828.53): C, 49.29; H, 4.26; N, 8.45. Found: C, 49.29; H, 4.20; N, 8.30.

[Ru(bdmpza)($O_2CC(O)Ph$)(NO)(PPh₃)]BF₄ (14c). Reaction of [Ru(bdmpza) ($O_2CC(O)Ph$)(PPh₃)] (3c) (554 mg, 0.729 mmol) with [NO]BF₄ (163 mg, 1.40 mmol) in CH₂Cl₂ (40 mL) for 1 h at 40 °C according to method D afforded the product [Ru(bdmpza)(O_2CC -(O)Ph)(NO)(PPh₃)]BF₄ (14c) as a pale red powder.

Yield 629 mg (0.718 mmol, 98%). mp 135 °C (dec.). IR (CH_2Cl_2) : $\tilde{\nu} = 1911$ vs (NO), 1697 s (CO_2^{-}) , 1647 m (CO_2^{-}) , 1562 m (C=N), 1483 w, 1462 w, 1450 w, 1437 m, 1418 vw cm⁻¹. IR (KBr): $\tilde{\nu} = 1906$ vs (NO), 1690 vs (CO₂⁻), 1647 m (CO₂⁻), 1595 w, 1561 m (C=N), 1483 w, 1463 w, 1450 vw, 1437 m, 1420 vw cm⁻¹. UV/vis (CH₂Cl₂): λ_{max} /nm (log ε) = 238.0 (4.42), 267.0 (4.47). FAB MS (NBOH): m/z (%) = 791 (100) [M⁺ + H], 641 $(51) [M^+ - bF], 566 (21) [M^+ - bF - CO_2 - NO], 363 (37) [M^+$ - bdmpza - bF - NO]. ¹H NMR (CDCl₃, 250 MHz): $\delta = 1.93$ (s, 3H, C³-CH₃), 2.35 (s, 3H, C^{3'}-CH₃), 2.55 (s, 3H, C^{5'}-CH₃), 2.62 (s, 3H, C⁵-CH₃), 6.25 (s, 1H, H_{pz}), 6.26 (s, 1H, H_{pz}), 6.70 (s, 1H, CH), 7.35-7.70 (m, 18H, Ph and PPh₃), 7.97 (d, 2H, o-Ph). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 11.1$ (C^{5'}-CH₃), 11.4 (C⁵-CH₃), 13.9 $(C^{3'}-CH_3)$, 14.2 $(C^{3}-CH_3)$, 68.1 (CH), 110.1 $(d, C^{4'}, {}^{4}J_{CP} = 3.9 \text{ Hz})$, 111.6 (C⁴), 124.7 (d, i-PPh₃, ${}^{1}J_{CP} = 54.6$ Hz), 128.9 (*p*-PPh₃), 129.8 (d, *m*-PPh₃, ${}^{3}J_{CP} = 11.3$ Hz), 129.9 (o-Ph), 133.0 (*i*-Ph), 133.2 (*m*-Ph), 133.5 (d, *o*-PPh₃, ${}^{2}J_{CP} = 9.8$ Hz), 134.7 (p-Ph), 145.6 (C^{5'}), 147.1 (C⁵), 154.1 (d, C^{3'}, ${}^{3}J_{CP} = 2.6$ Hz), 158.2 (C³), 163.3 (CO₂⁻), 169.3 (BF-CO₂⁻), 186.7 (C=O). ³¹P NMR (CDCl₃, 161.8 MHz): $\delta = 23.8$. For further purification red microystals of 14c were obtained from a CH₂Cl₂ solution layered with a 1:1 mixture (v/v) of pentane/diethylether. According to the ¹H NMR spectrum these crystals contained also half an equivalent CH₂Cl₂. Anal. Calcd for $C_{38}H_{35}BF_4N_5O_6PRu \times \frac{1}{2}CH_2Cl_2$ (919.04): C, 50.32; H, 3.95; N, 7.62. Found: C, 49.96; H, 3.93; N, 7.97.

Calculations. All density-functional theory (DFT)-calculations were carried out by using the Jaguar 6.0012⁸ software running on Linux 2.4.18–14smp on five Athlon MP 2800+ dual-processor workstations (Beowulf-cluster) parallelized with MPICH 1.2.4. X-ray structures or MM2 optimized structures were used as starting geometries. Complete geometry optimizations were carried out on

the implemented LACVP* (Hay–Wadt effective core potential (ECP) basis on heavy atoms, N31G6* for all other atoms) basis set and with the BP86 density functional. Orbital plots⁹ were obtained using Maestro 7.0.113, the graphical interface of Jaguar.

Rotational barriers have been calculated fully relaxed, fixating one torsion angle around the rotated bond, and optimizing all remaining degrees of freedom. Torsion angles were modified in steps of 5° beginning from the structure of minimum energy.

X-ray Structure Determinations. Single crystals of 4, 5a, 7a, 8b, 9b, 10b, and 14a were placed with Paratone-N or glue onto a glass fiber. A modified Siemens P4-Diffractometer and an Enraf Nonius CAD4-Mach3 diffractometer were used for data collection (graphite monochromator, Mo K α radiation, $\lambda = 0.71073$ Å, scan rate $4-30^{\circ}$ min⁻¹). The structures were solved by using either direct or Patterson methods {Siemens SHELXS-93¹⁰} and refined with full-matrix least-squares against F^1 {Siemens SHELXL-97¹⁰}. A weighting scheme was applied in the last steps of the refinement with $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ and $P = [2F_c^2 + Max(F_0^2, 0)]/$ 3. The hydrogen atoms were included in calculated positions and refined in a "riding model". In the asymmetric units of 8b and 14a one molecule of dichloromethane was co-crystallized per complex molecule, and so were two dichloromethane molecules in the complexes 4, 5a, and 10b. In case of complex 9b two chloroform molecules were found per asymmetric unit. All cocrystallized solvent molecules were included into the models and refined anisotropically. The PPh₃ as well as the 2-oxocarboxylato ligand exhibited a severe disorder in case of 8b. Thus, several restraints had to be applied, and the structure allows no detailed discussion of distances and angles. The structure pictures were prepared with the program Diamond 2.1e.11 All details and parameters of the measurements are summarized in Tables 1 and 2.

Results and Discussion

In a first attempt to exchange one PPh₃ for an acetonitrile ligand, the chlorido complex $[Ru(bdmpza)Cl(PPh_3)_2]$ (1) was

⁽⁸⁾ Jaguar, version 6.0; Schrödinger, LLC: New York, NY, 2005.

⁽⁹⁾ Stowasser, R.; Hoffmann, R. J. Am. Chem. Soc. 1999, 121, 3414–3420.

⁽¹⁰⁾ Sheldrick, G. M.; SHELX-97, Programs for Crystal Structure Analysis; University of Göttingen, Göttingen, Germany, 1997.

^{(11) (}a) Brandenburg, K.; Berndt, M. Diamond - Visual Crystal Structure Information System; Crystal Impact GbR: Bonn, Germany, 1999; (b) for Software Review see Pennington, W. T. J. Appl. Crystallogr. 1999, 32, 1028–1029.

Ruthenium Carboxylato and 2-Oxocarboxylato Complexes

Table 2. Structure Determination Details of Compounds 9b, 10b, and14a

	9b	10b	14a
empirical formula	C38H35N4O5PRu	C37H35N4O6PRuS	C33H33BF4N5O6PRu
[^]	\times 2CHCl ₃	$\times 2CH_2Cl_2$	\times CH ₂ Cl ₂
formula weight	998.48	965.64	899.42
space group (No.), Z	$P2_1/c$ (14), 4	$P2_1/n$ (14), 4	$P\bar{1}$ (2), 2
a [Å]	11.809(7)	10.863(6)	9.516(4)
<i>b</i> [Å]	14.330(2)	14.380(8)	11.297(8)
<i>c</i> [Å]	26.428(8)	26.060(13)	18.399(8)
α [°]	90	90	85.67(5)
β [°]	102.08(7)	90.07(5)	86.36(4)
γ [°]	90	90	75.70(5)
V [Å ³]	4373(3)	4074(4)	1909.1(17)
θ [°]	2.10 - 27.01	2.03 - 25.02	2.11 - 27.00
μ (Mo K α) [mm ⁻¹]	0.809	0.789	0.663
$D_{\rm c} [{\rm g} {\rm cm}^{-3}]$	1.517	1.574	1.565
T [K]	188(2)	188(2)	188(2)
reflections collected	9994	7565	9776
indep. reflections	9532	7160	7677
obs. refl. $(>2\sigma(I))$	7359	4276	5681
R_1^a , wR_2^b (obs.)	0.0612, 0.1540	0.0628, 0.1127	0.0497, 0.1035
R_1^a , wR_2^b (overall)	0.0821, 0.1693	0.1323, 0.1372	0.0819, 0.1197
${}^{a}R_{1} = \sum F_{0} - $	$F_c / \Sigma F_c $. ^b wR	$b = \{\sum [w(F_0^2 - F_0^2)] \}$	$\sum_{k=1}^{2} \frac{2}{2} \frac{1}{2} \frac{w(F_0^2)^2}{1}^{1/2}.$

Scheme 1. Syntheses of Acetonitrile Complexes

heated under reflux in acetonitrile. Indeed, one PPh₃ ligand is released and the chiral acetonitrile complex [Ru(bdmpza) $Cl(NCMe)(PPh_3)$] (4) is formed when the PPh₃ is extracted with *n*-pentane, although this procedure has to be repeated several times to obtain a complete conversion (Scheme 1).

The complex **4** exhibits two sets of signals for the pyrazolyl donors in the ¹H and ¹³C NMR spectra. The acetonitrile signals have been assigned to 1.88 ppm in the ¹H NMR spectrum and to 3.67 and 124.0 ppm in the ¹³C NMR spectrum. Only one singlet for a single PPh₃ ligand is found in the ³¹P NMR spectrum at 48.8 ppm. The IR signal of the coordinated acetonitrile is observed at 2275 cm⁻¹. The ³¹P resonance as well as the IR signal of the coordinated acetonitrile agree well with those reported for the analogous complex [RuTpCl(NCMe)(PPh₃)] (³¹P: 51.7 ppm; IR: $\tilde{\nu}$ (CN) = 2275 cm⁻¹, see Table 3).⁶

As described above, we already observed a hemilabile coordination of the 2-oxocarboxylato ligands. Usually

Figure 1. Molecular structure of [Ru(bdmpza)Cl(NCMe)(PPh₃)] (4) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure 2. Molecular structure of [Ru(bdmpza)(O₂CMe)(NCMe)(PPh₃)] (**5**a) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

[Ru(bdmpza)(O₂CC(O)Ph)(PPh₃)] (**3c**) with the $\kappa^2 O^1, O^2$ coordinated 2-oxocarboxylato ligand exhibits a purple color due to a MLCT transition.^{3b} Acetonitrile solutions of 3c changed to yellow upon standing within some days, clearly indicating a change to $\kappa^1 O^1$ -coordination and the formation of $[Ru(bdmpza)(O_2CC(O)Ph)(NCMe)(PPh_3)]$ (3c × NCMe).^{3b} Now, we achieved a controlled synthesis of $3c \times NCMe$ by reacting [Ru(bdmpza)(O₂CC(O)Ph)(PPh₃)] (3c) under reflux with acetonitrile for 2 h. An analogous reaction with the 2-oxocarboxylato complexes [Ru(bdmpza)(O2CC(O)Me)- (PPh_3)] (3a) and $[Ru(bdmpza)(O_2CC(O)Et)(PPh_3)]$ (3b) was not successful so far. On the other hand, we reacted the $\kappa^2 O^1, O^{1'}$ -carboxylato complexes [Ru(bdmpza)(O₂CMe)- (PPh_3)] (2a) and $[Ru(bdmpza)(O_2CPh)(PPh_3)]$ (2b) with acetonitrile within 5 h to form the carboxylato complexes [Ru(bdmpza)(O₂CCH₃)(NCMe)(PPh₃)](5a) and [Ru(bdmpza)- $(O_2CPh)(NCMe)(PPh_3)$] (5b) (Scheme 1).

The acetato complex **5a** exhibits two sets of signals for the diastereotopic pyrazolyl groups in the ¹H and ¹³C NMR spectra. One signal at 2.22 ppm in the ¹H NMR spectrum and two signals at 4.60 and 124.7 ppm in the ¹³C NMR have been assigned to the acetonitrile ligand. The ³¹P NMR singlet of the PPh₃ ligand was observed at 53.4 ppm. X-ray structure determinations revealed the molecular structures of **4** and **5a** which are depicted in Figures 1 and 2. Selected bond lengths and angles are reported in Table 4. The coordination geometry of these complexes is approximately octahedral, and the distances and angles in these two complexes are

⁽¹²⁾ Gemel, C.; Trimmel, G.; Slugovc, C.; Kremel, S.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics **1996**, *15*, 3998–4004.

relatively uniform. Because of the space groups $P2_1/a$ and $P\overline{1}$, both enantiomers of the chiral complexes **4** and **5a** can be found in the unit cells. The distances and angles agree well with those of complex **1** which we reported on lately.^{3a} It is interesting to note that the positions of the chlorido ligand and also the acetato ligand are *trans* to a pyrazol donor of the bdmpza ligand. In contrast, so far most molecular structures showed a chlorido ligand *trans* to the carboxylato donor of the bdmpza ligand.^{3,4}

The complex [Ru(bdmpza)(O₂CPh)(NCMe)(PPh₃)] (**5b**) does form two isomers which show a rather similar pattern in the NMR spectra. The acetonitrile signals have been assigned for both isomers (¹H NMR: 2.23 and 1.92 ppm; ¹³C NMR: 2.23, 124.7, and 3.56, 124.1 ppm). The two signals in the ³¹P NMR spectrum at 53.6 and 51.9 ppm are due to the PPh₃ ligands of the two isomers. So far, we could not deduce which of the three possible structural isomers are preferentially formed, but we assume one isomer might have a configuration similar to **5a** and the other one a configuration with the benzoato ligand *trans* to the bdmpza carboxylato donor.

The CO₂⁻ signals in the ¹³C NMR spectra of the acetato or benzoato ligand in **5a** and **5b**, respectively, have been shifted by 9 ppm to higher field compared to **2a** and **2b**, on account of the $\kappa^1 O^1$ -coordination of the acetato and benzoato ligand. The IR bands assigned to $\tilde{\nu}(C\equiv N)$ of the acetonitrile ligands at 2271 (**5a**) and 2270 cm⁻¹ (**5b**) are reasonable compared to other complexes such as those of the Tp complex [RuTpCl(NCMe)(PPh₃)]⁶ (see Table 3). In the FAB mass spectra molecular mass peaks fitto [Ru(bdmpza)(O₂CMe)-(NCMe)(PPh₃)] (**5a**) and [Ru(bdmpza)(O₂CPh)(NCMe)-(PPh₃)] (**5b**), although the 100% peaks are assigned to [Ru(bdmpza)(O₂CMe)(PPh₃)] (**2a**) and [Ru(bdmpza)(O₂-CPh)(PPh₃)] (**2b**).

Because of the problems that came about in these reactions of the acetonitrile sp-*N* donor with the carboxylato and 2-oxocarboxylato complexes, pyridine has been tested as sp²-*N* donor ligand instead. A complete conversion within 3 days could be achieved to give complexes 7 and 8, respectively, for the carboxylato complexes 3a - 3c (Scheme 2) by using 10 equiv of pyridine in dichloromethane.

A similar reaction with [Ru(bdmpza)Cl(PPh₃)₂] (1) was also successful and afforded the complex [Ru(bdmpza)-**Table 3.** Spectroscopic Data of Various Ruthenium Acetonitrile Complexes Scheme 2. Syntheses of Pyridine Complexes

Cl(PPh₃)(py)] (6). All pyridine complexes 6, 7a, 7b, and 8a-8c exhibit ¹H and ¹³C NMR spectra typical for chiral complexes with two sets of pyrazolyl signals. The PPh₃ singlets in the ³¹P NMR spectra appear around 50 ppm and are thus shifted by 10 ppm to higher field compared to the educt complexes. Mass peaks in the FAB mass spectra affirm the composition of the complexes.

The ¹³C NMR CO₂⁻ signals of the $\kappa^1 O^1$ -coordinated carboxylato ligands are shifted by 11 ppm to higher field compared to the κ^2 -carboxylato complexes (178.0 (**7a**) and 171.1 ppm (**7b**)). The ketocarbonyl signals of the 2-oxocarboxylato complexes exhibit a similar 15 ppm shift to higher

complex	IR (C=N) $[cm^{-1}]$	¹ H (MeCN) [ppm]	¹³ C (MeCN) [ppm]	³¹ P [ppm]
[Ru(bdmpza)Cl(NCMe)(PPh ₃)] (4)	2275 ^a	1.88	3.67	48.8
	2269 ^b		124	
$[Ru(bdmpza)(O_2CMe)(NCMe)(PPh_3)]$ (5a)	2271 ^a	2.22	4.6	53.4
	2263 ^b		124.7	
$[Ru(bdmpza)(O_2CPh)(NCMe)(PPh_3)]$ (5b)	2270^{a}	2.23	2.23; 124.7	53.6
-	2268 ^b	1.92	3.56; 124.1	51.9
$[Ru(bdmpza)(O_2CC(O)Ph)(NCMe)(PPh_3)]$ (3c × NCMe)	2278^{a}	1.97	3.8	49.7
	2277 ^b		n.d.	
[RuTpCl(NCMe)(PPh ₃)] ⁶	2278 ^b	2.1		51.7
$[RuTpH(NCMe)(PPh_3)]^6$	2258 ^b	1.69		77.6
[RuTp(dppm)(NCMe)]CF ₃ SO ₃ ¹²	2284^{c}	1.86	4.2	7
			126.2	
[RuTp(NCMe)(pn)]BPh4 ¹²	2272^{c}	2.34	4.9	69.4
			127.4	

^a CH₂Cl₂. ^b KBr. ^c Diffuse reflectance.

Figure 3. Molecular structure of $[Ru(bdmpza)(O_2CMe)(PPh_3)(py)]$ (7a) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Figure 4. Molecular structure of $[Ru(bdmpza)(O_2CC(O)Et)(PPh_3)(py)]$ (**8b**) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. PPh₃ and O₂CC(O)CH₂CH₃ ligands are disordered. Only one of the two alternative orientations that have been included into the structure model is shown here for clarity.

field and are assigned to 197.6 (8a), 200.3 (8b), and 190.4 ppm (8c), respectively. These are typical values of noncoordinated keto ligands.^{3b}

Crystals suitable for a single crystal X-ray structure determination have been obtained of [Ru(bdmpza)(O₂- $CMe)(PPh_3)(py)$] (7a) and $[Ru(bdmpza)(O_2CC(O)Et)-$ (PPh₃)(py)] (**8b**) (Figure 3 and 4; Table 5). The pyridine and the PPh₃ coordinate trans to the pyrazolyl groups. The acetato and the 2-oxocarboxylato ligands are trans to the carboxylato donor of the bdmpza ligand. Because of a disorder of the PPh₃ and the 2-oxocarboxylato ligands in the molecular structure of **8b**, we will focus on the molecular structure of 7a for discussion, although both structures are very similar. The distances and angles of the [Ru(bdmpza)(PPh₃)] fragment are almost identical to those of molecular structures of 1, 2a × H₂O, and 3b.³ The bond lengths of the κ^1 -acetato ligand agree well with those of complex $2a \times H_2O$, which we reported on recently (7a: Ru–O(3) 2.090(3), C(3)–O(3) 1.286(5), C(3)-O(4) 1.221(5); **2a** × H₂O: Ru-O(3) 2.087(3), C(3) - O(3) 1.255(6), C(3) - O(4) 1.220(7)).^{3b}

The distance Ru-py in complex [Ru(bdmpza)(O₂CMe)-(PPh₃)(py)] (**7a**) is with 2.080(3) Å identical to that in [RuTpCl(PPh₃)(py)] (2.080(7) Å)¹³ and agrees also well with those of cationic Tp and Tpm such as [TpRu(OH₂)-

Figure 5. Contour plots (Kohn–Sham orbitals) of (a) the HOMO-2 of pyridine, (b) the HOMO of pyridine, and (c) the LUMO of pyridine.

(py)(=C=C(H)Ph)]OTf (Ru-py = 2.077(3) Å)¹⁴ or [TpmRu(py)₃](PF₆)₂ (Ru-py = 2.068(5), 2.090(6), and 2.093(6))Å.¹⁵

Although the π -acceptor properties of pyridine are generally accepted to be moderate,¹⁶ the aromatic system of this ligand allows back-bonding as pointed out by the contour plots of its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO, Figure 5b and 5c). For a discussion of the almost identical orientation of the pyridine ligands in **7a** and **8b** DFT calculations were performed with the 16 valence electron fragment [Ru-(bdmpza)(O₂CPh)(PPh₃)]. Figure 6 shows contour plots of its LUMO, HOMO, HOMO-1, and HOMO-2.

According to these plots, especially the HOMO-2 of the 16 valence electron fragment seems to determine the orientation of the pyridine ligands in the complexes [Ru(bdmpza)- $(O_2CMe)(PPh_3)(py)$] (7a) and [Ru(bdmpza)(O_2-CC(O)Et)(PPh_3)(py)] (8b). The pyridine ligands in 7a and 8b are almost in a plane with O(1)-Ru-OAc-N_{py} or O(1)-Ru-O_{2-oxocarb}-N_{py} respectively (Figure 7a and 7b). This orientation allows a Ru_d π -N_p π back-donation by interaction of the pyridine π^* orbital with the HOMO-2.

Nevertheless, the pyridine ligands in 7a and 8b are slightly tilted out of the Ocarboxylate-Ru-Npy planes as indicated by the absolute values of the torsion angles [7a, $|\angle(O_{OAc} Ru-N_{py}-C_{py}| = 22.2(2)^{\circ}; 8b, |\angle(O_{2-oxocarb}-Ru-N_{py} C_{py}| = 17.9(3)^{\circ}$ (Figure 7). This agrees well with the calculated (DFT) structure of minimum energy $(|\angle (O_{OAc}-Ru-N_{py}-C_{py})| = 17.7^{\circ})$ for complex 7a. To investigate this deviation from the ideal perpendicular orientation by some 20°, the rotational barrier of the pyridine ligand in [Ru(bdmpza)(O₂CMe)(PPh₃)(py)] (7a) has been calculated in steps of 5° beginning from the minimum energy structure (Figure 8). A rotation of the pyridine ligand by 20° causes a rather small increase in energy by 3 to 5 kJ/mol. Thus, this deviation might be due to crystal-packing effects or interactions of the pyridine with PPh₃ or the pyrazolyl Me^{3'}. Rather similar findings have been reported recently by us for a vinylidene ligand instead of pyridine in an analogous complex [Ru(bdmpza)Cl(=C=CHTol)(PPh₃)].⁴

Another text book example for a good σ -donor/ π -acceptor ligand is the carbonyl ligand. In previous studies with

⁽¹³⁾ Pavlik, S.; Puchberger, M.; Mereiter, K.; Kirchner, K. Eur. J. Inorg. Chem. 2006, 4137–4142.

⁽¹⁴⁾ Takahashi, Y.; Akita, M.; Hikichi, S.; Moro-oka, Y. *Inorg. Chem.* **1998**, *37*, 3186–3194.

⁽¹⁵⁾ Laurent, F.; Plantalech, E.; Donnadieu, B.; Jiménez, A.; Hernández, F.; Martínez-Ripoll, M.; Biner, M.; Llobet, A. *Polyhedron* 1999, 18, 3321–3331.

^{(16) (}a) Kraihanzel, C. S.; Cotton, F. A. Inorg. Chem. 1963, 2, 533–540.
(b) Graham, W. A. G. Inorg. Chem. 1968, 7, 315–321. (c) Fielder, S. S.; Osborne, M. C.; Lever, A. B. P.; Pietro, W. J. J. Am. Chem. Soc. 1995, 117, 6990–6993. (d) Estrin, D. A.; Hamra, O. Y.; Paglieri, L.; Slep, L. D.; Olabe, J. A. Inorg. Chem. 1996, 35, 6832–6837.

Figure 6. Contour plots (frontier Kohn–Sham orbitals) of the [Ru(bdmpza)(κ^1 -O₂CPh)(PPh₃)] 16VE fragment (DFT-calculations) with (a) LUMO, (b) HOMO, (c) HOMO-1, and (d) HOMO-2.

Figure 7. Orientation of the pyridine ligand in (a) [Ru(bdmpza)(O₂CMe)(PPh₃)(py)] (7a) and (b) in [Ru(bdmpza)(O₂CC(O)Et)(PPh₃)(py)] (8b).

ruthenium vinylidene complexes [Ru(bdmpza)Cl(=C=CHR)-(PPh₃)], as mentioned above, we already obtained a carbonyl complex [Ru(bdmpza)Cl(CO)(PPh₃)] by a degradation reaction.⁴ [Ru(bdmpza)Cl(CO)(PPh₃)] can also be obtained by replacing a PPh₃ ligand of [Ru(bdmpza)Cl(PPh₃)₂] (1) with CO.⁴ Therefore, we decided to expose the carboxylato complexes [Ru(bdmpza)(O₂CMe)(PPh₃)] (**2a**) and [Ru-

(bdmpza)(O₂CPh)(PPh₃)] (**2b**) to CO. Flushing solutions of **2a** and **2b** with CO gas resulted within 2 h in a complete conversion of these complexes to the carbonyl complexes [Ru(bdmpza)(O₂CMe)(CO)(PPh₃)] (**9a**) and [Ru(bdmpza)-(O₂CPh)(CO)(PPh₃)] (**9b**) (Scheme 3).

Mass spectroscopic data with $[M^+]$ peaks at m/z 698 (9a) and 760 (9b) revealed the formation of the carbonyl

Figure 8. Rotational barrier of the pyridine ligand in [Ru(bdmpza)- $(O_2CMe)(PPh_3)(py)$] (**7a**), calculated in 5° steps beginning from the structure of minimum energy.

complexes. Because of the chiral C_1 geometry of the complexes, again two sets of signals are observed in the ¹H and ¹³C NMR spectra for the diastereotopic pyrazolyl groups. The ¹³C NMR carboxylate signals of the $\kappa^1 O$ -coordinated acetato and benzoato ligands are shifted by 11 ppm to higher field (177.3 ppm (9a), 172.6 ppm (9b)) compared to the complexes 2a and 2b with $\kappa^2 O, O'$ -coordination. IR bands at 1669 cm⁻¹ (**9a**) and 1669 cm⁻¹ (**9b**) are assigned to the asymmetric carboxylate vibrations $\tilde{\nu}_{asym}(CO_2^{-})$ of the bdmpza ligand. Two additional bands at 1624 cm^{-1} (9a) and 1636 cm⁻¹ (9b) belong to the carboxylate vibrations $\tilde{\nu}_{asym}(CO_2^{-})$ of the $\kappa^1 O$ -coordinated acetato and benzoato ligands. The ³¹P NMR singlets of the PPh₃ ligands at 43.3 (**9a**) and 43.6 ppm (9b) are almost identical to the singlet we reported recently for [Ru(bdmpza)Cl(CO)(PPh₃)] (41.7 ppm).⁴ IR signals at 1977 (9a) and 1978 (9b) cm^{-1} (CH₂Cl₂) and doublets in the ¹³C{¹H} NMR spectra at 205.3 ppm (${}^{2}J_{CP}$ = 19.8 Hz) and 204.2 ppm (${}^{2}J_{CP} = 21.2$ Hz) can be assigned to the carbonyl ligands and agree also well with the data observed for [Ru(bdmpza)Cl(CO)(PPh₃)].⁴ Several carbonyl ruthenium complexes bearing Tp (BH(pz)₃), Cp (η^{5} -C₅H₅), and Cp* (η^5 -C₅Me₅) ligands are described in the literature (see Table 6).^{17–23}

This allows a closer discussion of the electron donating properties of the bdmpza ligand. The carbonyl vibrations are observed at higher wavenumbers compared to analogous Cp*, Cp, and Tp ruthenium complexes such as [RuCp-Cl(CO)(PPh₃)] (1958 cm⁻¹), [RuCp*(O₂CMe)(CO)(PPh₃)] (1925 cm⁻¹), or [RuTpCl(CO)(PPh₃)] (1965 cm⁻¹) (Table 4). This implies a weaker Ru_{dπ} \rightarrow C_{pπ} back-donation into the carbonyl ligand of the bdmpza complexes. Thus, in these

- (17) Sun, N.-Y.; Simpson, S. J. J. Organomet. Chem. 1992, 434, 341–349.
- (18) Slugovc, C.; Sapunov, V. N.; Wiede, P.; Mereiter, K.; Schmid, R.; Kirchner, K. J. Chem. Soc., Dalton Trans. 1997, 4209–4216.
- (19) Wilczewski, T.; Dauter, Z. J. Organomet. Chem. 1986, 312, 349-356.
- (20) Cao, M.; Do, L. V.; Hoffman, N. W.; Kwan, M.-L.; Little, J. K.; McGilvray, J. M.; Morris, C. B.; Söderberg, B. C.; Wierzbicki, A.; Cundari, T. R.; Lake, C. H.; Valente, E. J. Organometallics 2001, 20, 2270–2279.
- (21) Daniel, T.; Mahr, N.; Braun, T.; Werner, H. Organometallics 1993, 12, 1475–1477.
- (22) Conroy-Lewis, F. M.; Simpson, S. J. J. Organomet. Chem. 1987, 322, 221–228.
- (23) Werner, H.; Braun, T.; Daniel, T.; Gevert, O.; Schulz, M. J. Organomet. Chem. 1997, 541, 127–147.

ruthenium complexes the bdmpza ligand seems to be less electron donating compared to Cp*, Cp, and even Tp ligands. Crystals of [Ru(bdmpza)(O₂CPh)(CO)(PPh₃)] (**9b**) suitable for an X-ray structure determination have been obtained from a CHCl₃ solution. The molecular structure (Figure 9, Table 7) reveals the formation of a carbonyl complex and the κO^1 coordination of the benzoate ligand *trans* to the bdmpza carboxylate donor.

The Ru–C(3) and C(3)–O(3) bond distances of the carbonyl ligand in **9b** at 1.870(5) Å and 1.145(6) Å are in the expected range of other ruthenium carbonyl complexes (see Table 6).^{17–20} These Cp and Tp ruthenium carbonyl complexes show molecular structures with d(Ru-CO) = 1.872(6), d(C-O) = 1.132(8) Å for [RuCpCl(CO)(PPh₃)] and d(Ru-CO) = 1.848(6), d(C-O) = 1.137(8) Å for [RuTpCl(CO)(PPh₃)] (see Table 6). Also, the bond distances of the previously reported complex [Ru(bdmpza)Cl(CO)(P-Ph₃)] (d(Ru-CO) = 1.821(5) Å, d(C-O) = 1.151(6)) are in this range.⁴ The angle Ru–C(3)–O(3) is almost linear (177.0(4)°). The distance d(Ru-N11) = 2.183(3) Å is significantly longer compared to d(Ru-N21) = 2.148(4) Å, indicating the *trans* influence of the carbonyl ligand.

Whereas CO is able to replace one *O*-donor of an hemilabile chelating $\kappa^2 O^1, O^{1'}$ -carboxylato ligand, an analogous reaction with $\kappa^2 O^1, O^{2'}$ -oxocarboxylato complexes has not been successful so far. Solutions of [Ru(bdmpza)(O₂-CC(O)Me)(PPh₃)] (**3a**) and [Ru(bdmpza)(O₂CC(O)Ph)-(PPh₃)] (**3c**) flushed with CO showed only traces of newly formed products beside the educts in the NMR spectra. Thus, 2-oxocarboxylato ligands seem to be tighter bound ligands compared to the carboxylato ligands.

Besides CO, gaseous SO₂ can act as a good σ -donor and π -acceptor ligand too. Various coordination modes to metals are known for SO₂ ligands. A η^1 -coordination via the sulfur atom is possible with a planar or a pyramidal geometry. Also a η^2 -coordination of SO₂ via a sulfur and an oxygen atom can take place (see Figure 10).^{24–27}

Furthermore, SO₂ can be coordinated via the oxygen atom and might also act as a bridging ligand.^{25–27} Only a few mainly cationic ruthenium SO₂ complexes such as [RuCp(chir)-(SO₂)]PF₆ and [RuCp*(PPh₃)₂(SO₂)]Cl have so far been described in the literature.^{7b,28–30} Thus, we also investigated the reactivity of carboxylato and 2-oxocarboxylato complexes toward SO₂. Solutions of [Ru(bdmpza)(O₂CMe)(PPh₃)] (**2a**) and [Ru(bdmpza)(O₂CPh)(PPh₃)] (**2c**) in CH₂Cl₂ were flushed with gaseous SO₂ for 30 min to obtain the SO₂ complexes [Ru(bdmpza)-(O₂CMe)(PPh₃)(SO₂)] (**10a**) and [Ru(bdmpza)(O₂CPh)(PPh₃)-(SO₂)] (**10b**) in high yields (Scheme 3). The IR spectra exhibit two new bands at 1284 and 1128 cm⁻¹ (for **10a**) and 1286 and 1129 cm⁻¹ (for **10b**). These have been assigned to the

- (25) Kubas, G. J. Inorg. Chem. 1979, 18, 182-188.
- (26) Schenk, W. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 98-109.
- (27) Kubas, G. J. Acc. Chem. Res. 1994, 27, 183-190.
- (28) Schenk, W. A.; Karl, U.; Horn, M. R. Z. Naturforsch. 1989, 44b, 1513– 1518.
- (29) Schenk, W. A.; Karl, U. Z. Naturforsch. 1989, 44b, 988-989.
- (30) Schenk, W. A.; Dombrowski, E.; Reuther, I.; Stur, T. Z. Naturforsch. **1992**, 47b, 732–740.

⁽²⁴⁾ Ryan, R. R.; Kubas, G. J.; Moody, D. C.; Eller, P. G. Struct. Bonding (Berlin) 1981, 46, 47–100.

Scheme 3. Syntheses of Carbonyl and SO₂ Complexes

 Table 4. Selected Bond Lengths [Å] and Angles [deg] of Complexes 4 and 5a

	4	5a		4	5a
Ru-N(11)	2.106(3)	2.069(5)	Ru-P	2.3011(10)	2.2969(16)
Ru-N(21)	2.135(3)	2.111(5)	Ru-N(71)	1.993(3)	1.993(5)
Ru = O(1)	2.098(2)	2.099(4)	N(71) - C(71)	1.138(4)	1.135(7)
Ru-Cl	2.4282(9)		C(71)-C(72)	1.454(5)	1.455(8)
Ru-O(61)		2.075(4)			
N(11)-Ru-N(21)	83.20(11)	83.30(18)	O(1)-Ru-N(71)	177.88(11)	174.48(17)
O(1) - Ru - N(11)	86.27(10)	89.04(16)	P(1)-Ru-Cl	86.60(3)	
O(1) - Ru - N(21)	87.12(10)	85.38(17)	P(1) - Ru - O(61)		90.71(13)
O(1)-Ru-P	90.30(7)	88.68(13)	N(11)-Ru-Cl	171.55(8)	
N(21)-Ru-P	174.60(8)	173.79(12)	N(11)-Ru-(O61)		168.03(16)
P-Ru-N(71)	91.69(9)	95.60(15)	Ru-N(71)-C(71)	174.7(3)	168.2(5)
able 5. Selected Bond L	engths [Å] and Angles [deg] of the Complexes	7a and 8b		
	7a	8b		7a	8b
Ru-N(11)	2.138(3)	2.115(3)	N(11)-Ru-N(21)	85.71(13)	85.71(15)
Ru-N(21)	2.096(3)	2.089(4)	O(1)-Ru-N(11)	85.27(11)	85.03(13)
Ru = O(1)	2.110(3)	2.108(3)	O(1)-Ru-N(21)	87.39(11)	87.41(16)
Ru-N(1)	2.080(3)	2.095(4)	O(1) - Ru - O(3)	177.31(11)	178.27(9)
Ru = O(3)	2.090(3)	2.097(3)	N(11)-Ru-P	171.02(9)	171.38(8)
Ru-P	2.3051(12)	2.303(3)	N(21) - Ru - N(1)	172.83(13)	173.03(11)

1.278(5)

1.223(5)

asymmetric and symmetric SO₂ vibrations. Such values are typical for SO₂ complexes with a η^1 -planar geometry, which usually reveal two bands in between 1300 to 1225 cm⁻¹ and 1140 to 1060 cm⁻¹.^{24,25} These vibrations of the bdmpza ruthenium SO₂ complexes are found at smaller wavenumbers compared to the cyclopentadienyl complex [Ru(Cp)(PPh₃)₂-(SO₂)]Cl (1294 and 1118 cm⁻¹)²⁸ but at higher wavenumbers compared to the Cp* ruthenium complex [RuCp*(PPh₃)₂-(SO₂)]Cl (1277 and 1110 cm⁻¹)²⁸ (see Table 8). The

1.286(5)

1.221(5)

C - O(3)

C - O(4)

O2 N122 C1 N22 C2 N112 N21 O1 Ru1 O1 C3 C31 C33 O5 O4

Figure 9. Molecular structure of [Ru(bdmpza)(O₂CPh)(CO)(PPh₃)] (9b) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

coordination of the SO_2 ligand is also backed by an M^+ peak in the FAB mass spectrum.

The unsymmetrical C_1 geometry of both SO₂ complexes 10a and 10b is clearly indicated by two sets of signals in the ¹H and ¹³C NMR spectra, which have been assigned to the two pyrazolyl donors. The ¹³C NMR signal of the $\kappa^1 O$ coordinated carboxylato donor is shifted by 9 ppm to higher field compared to the $\kappa^2 O^1, O^{1'}$ -coordinated carboxylato complexes **2a** and **2b**. This shift and the ³¹P NMR signals of the PPh₃ ligand at 45.4 and 44.6 ppm agree well with the carbonyl complex data discussed above. Similar to the CO ligand, SO₂ is able to replace one O-donor of the hemilabile, chelating $\kappa^2 O^1, O^{1'}$ -carboxylato ligand. Again, a similar reaction of SO₂ with the 2-oxocarboxylato complexes [Ru-(bdmpza)(O₂CC(O)CH₃)(PPh₃)] (3a), [Ru(bdmpza)(O₂CC- $(O)CH_2CH_3)(PPh_3)$] (**3b**), and $[Ru(bdmpza)(O_2CC(O)Ph)-$ (PPh₃)] (3c) has not been successful so far. An X-ray structure determination of [Ru(bdmpza)(O₂CPh)(PPh₃)(SO₂)] (10b) shows a molecular structure with the SO₂-ligand *trans* to a pyrazolyl donor of the bdmpza ligand (Figure 11, Table 9). This position is also preferred by the other acceptor ligands, such as CO and pyridine (Figures 3, 4, and 10). The bond distances from the bdmpza and PPh₃ ligands to the ruthenium and also the angles between the coordinated

⁽³¹⁾ Kovalevsky, A. Y.; Bagley, K. A.; Cole, J. M.; Coppens, P. Inorg. Chem. 2003, 42, 140–147.

Table 6. Spectroscopic and Structure Data of Various Ruthenium Carbonyl Complexes

1 1	,	1		
complex	IR (CO) [cm ⁻¹]	<i>d</i> (Ru−CO)/ <i>d</i> (C−O) [Å]	∠(Ru−C−O) [deg]	³¹ P [ppm]
[Ru(bdmpza)(O ₂ CMe)(CO)(PPh ₃)] (9a)	1977 ^a 1967 ^b			43.3
$[Ru(bdmpza)(O_2CPh)(CO)(PPh_3)] \ (\textbf{9b})$	1978 ^a 1953 ^b	1.870(5) 1.146(6)	177.0(4)	43.6
$[Ru(bdmpza)Cl(CO)(PPh_3)]^4$	1969 ^a	1.821(5) 1.151(6)	178.0(4)	41.7
$\left[RuTpCl(CO)(PPh_3)\right]^{17,18}$	1965 ^c	1.848(6) 1.137(8)	173.2(5)	42.4
[RuCpCl(CO)(PPh ₃)] ¹⁹	1958 ^c	1.911(20) 1.034(27)	176.9(1.2)	
$[RuCpCl(CO)(PPh_3)]^{20}$	1959 ^a	1.872(6) 1.132(8)	178.3(8)	48.9
$[RuCp(O_2CMe)(CO)(PPh_3)]^{21}$	1945 ^b			54.3
[RuCp*Cl(CO)(PPh ₃)] ²²	1918 ^c			48.2
[RuCp*(O ₂ CMe)(CO)(PPh ₃)] ²³ ^a CH ₂ Cl ₂ . ^b KBr. ^c Nuiol.	1925 ^{<i>b</i>}			53.9

 Table 7. Selected Bond Lengths [Å], Angles [deg], and Torsion Angles
 [deg] of Complex 9b

Ru-N(11)	2.183(3)	C(3)-O(5)	1.145(6)
Ru-N(21)	2.148(4)	C(1) - C(2)	1.552(6)
Ru-O(1)	2.115(3)	C(2) - O(1)	1.273(5)
Ru-P	2.3293(17)	C(2) - O(2)	1.233(5)
Ru-O(3)	2.059(3)	C(31)-O(3)	1.297(5)
Ru-C(3)	1.870(5)	C(31)-O(4)	1.231(5)
N(11)-Ru-N(21)	81.41(14)	O(1)-Ru-O(3)	169.37(12)
O(1)-Ru-N(11)	85.89(12)	N(21)-Ru-P	175.49(10)
O(1)-Ru-N(21)	85.54(14)	N(11) - Ru - C(3)	174.56(18)
Ru-C(3)-O(5)	177.0(4)		

O(3)-C(31)-C(32)-C(33) 26.4(6)

ligands are more or less the same compared to the molecular structures of $2a \times H_2O$ and 3c.

The κ^1 -benzoato bond lengths of **10b** [d(C(3)-O(5)) =1.271(8) Å; d(C(3)-O(6)) = 1.272(8) Å] are almost equal. Thus, both oxygen donors seem to share the negative charge of the benzoato ligand. The phenyl group of the benzoato ligand in the SO₂-complex **10b** deviates by $-21.1(10)^{\circ}$ from the RCO₂-plane. A similar twist by $26.4(6)^{\circ}$ is observed for the carbonyl complex **9b**. The η^1 -bound SO₂ is not planar but distorted with a distance of 0.685(11) Å between ruthenium and the O(3)-S(1)-O(4) plane. The bond distances S(1) - O(3) [1.452(5) Å] and S(1) - O(4) [1.456(5) Å]agree well with those of other ruthenium SO2 complexes such as [RuCp(chir)SO₂]PF₆ [1.432(6) and 1.458(6) Å] (see Table 8). The Ru–S(1) distance [2.182(2) Å] is significantly longer than those found in other ruthenium SO₂ complexes like $[RuCp(chir)SO_2]PF_6$ [2.128(2) Å] or trans- $[Ru(O_2CCF_3) (NH_3)_4(SO_2)](O_2CCF_3)$ [2.0945(5) Å].^{7b,31}

The S(1)–O(6) distance between the SO₂ and the benzoato ligand is surprisingly short [2.022(5) Å]. In fact, it lies in

Figure 11. Molecular structure of [Ru(bdmpza)(O₂CPh)(PPh₃)(SO₂)] (**10b**) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

between the sum of the van der Waals radii $(3.25 \text{ Å})^{32}$ and a single S–O bond (around 1.6 Å) such as the S-OH bond in the complex [Ru(SO₃H)₂(bpy)₂] (1.586(5) and 1.612(8)Å).³³ This rather short distance indicates an intramolecular Lewis acid—base interaction between the Lewis acid SO₂ and the uncoordinated carboxylate oxygen. Because of the partial charge at this atom, this oxygen donor should be a rather good Lewis base.

In η^1 -planar complexes SO₂ usually binds via the sulfur lone electron pair as a σ -donor to the metal. The LUMO of SO₂ which exhibits a π^* antibonding character, allows that this coordinative bond is enforced via π backdonation by filled metal d orbitals (Figure 6, Figure 12 and 13).²⁶ A η^1 pyramidal coordination of SO₂ ligands is observed for electron rich complex fragments such as Vaskas SO₂ complex [IrCl(CO)(PPh₃)₂(SO₂)].²⁶ In these η^1 -pyramidal SO₂ complexes the bonding electron pair is formally provided by the electron-rich transition metal fragment (Figure 12).²⁶

⁽³²⁾ Weast, R. C. CRC Handbook of Chemistry and Physics; CRC Press, Boca Raton, 1988; p D-111.

⁽³³⁾ Allen, L. R.; Jeter, D. Y.; Cordes, A. W.; Durham, B. Inorg. Chem. 1988, 27, 3880–3885.

Table 8. Spectroscopic and Structural Data Of Cp, Cp*, and bdmpza SO₂ Complexes

		1/D CO)/	((P 6 0))/	31D
complex	$[cm^{-1}]$	d(S=0) [Å]	$\angle (\text{Ku}-\text{S}-\text{O})/$ $\angle (\text{O}-\text{S}-\text{O}) \text{ [deg]}$	[ppm]
[Ru(bdmpza)(O ₂ CMe)(PPh ₃)(SO ₂)] (10a)	1284 ^{<i>a</i>} 1128 ^{<i>a</i>} 1282 ^{<i>b</i>} 1128 ^{<i>b</i>}			45.4
$[Ru(bdmpza)(O_2CPh)(PPh_3)(SO_2)] (10b)$	1286^{a} 1129^{a} 1283^{b} 1125^{b}	2.182(2) 1.452(5) 1.456(5)	118.1(2) 124.0(2) 114.2(3)	44.6
[RuCp(chir)(SO ₂)]PF ₆ ^{7b}	1296 ^c 1118 ^c	2.128(2) 1.432(6) 1.458(6)	120.9(3) 125.1(3) 113.9(4)	69.3 74.2
$[RuCp(PPh_3)_2(SO_2)]Cl^{28}$	1294 ^c 1118 ^c			32.6
$[RuCp*(PPh_3)_2(SO_2)]Cl^{28}$	1277^{c} 1110^{c}			35.3
trans-[Ru(O ₂ CCF ₃)(NH ₃) ₄ (SO ₂)] (O ₂ CCF ₃) ³¹	1275 ^b 1122 ^b	2.0945(5) 1.444(2) 1.446(2)		
^a CH ₂ Cl ₂ , ^b KBr, ^c Nujol				

Table 9. Selected Bond Lengths [Å] and Angles [deg] of Complex 10b

Ru-N(11)	2.147(6)	S-O(3)	1.452(5)
Ru-N(21)	2.206(6)	S-O(4)	1.456(6)
Ru = O(1)	2.092(4)	S-O(6)	2.022(5)
Ru-P	2.331(2)	C(3)-O(5)	1.271(8)
Ru-S	2.182(2)	C(3)-O(6)	1.272(8)
Ru-O(5)	2.073(4)	Ru-plane (S1-O3-O4)	0.685(11)
N(11)-Ru-N(21)	79.7(2)	Ru-S(1)-O(3)	124.0(2)
O(1)-Ru-N(11)	88.82(19)	Ru - S(1) - O(4)	118.1(2)
O(1)-Ru-N(21)	86.7(2)	O(3) - S(1) - O(4)	114.2(3)
O(1)-Ru-P(1)	89.25(14)	Σ	356.3(7)
P(1) - Ru - S(1)	91.29(7)		
S(1) - Ru - O(1)	93.90(13)	O(5)-C(3)-C(4)-C(9)	-21.1(10)

A transition from η^1 -planar to η^1 -pyramidal geometry might be caused if either the σ^* orbital of the M-S bond or the LUMO of SO₂ is occupied and both are of similar energy.²⁶ Obviously, according to the angles around the SO₂ ligand [\angle Ru-S(1)-O(3) = 124.0(2)°, \angle Ru-S(1)-O(4) = 118.1(2)°, and \angle O(3)-S(1)-O(4) = 114.2(3)°], the complex [Ru(bdmpza)(O₂CPh)(PPh₃)(SO₂)] (**10b**) is an almost η^1 planar complex in which SO₂ acts as σ -donor and π -acceptor. Because of the Lewis acid-base interaction between the coordinated SO₂ and the carboxylato ligand, indicated by the short S(1)-O(6) distance [2.022(5) Å], the SO₂ LUMO

 Table 10. Selected Bond Lengths [Å], Angles [deg], and Torsion Angles [deg] of the Complex 14a

Ru-N(11)	2.117(4)	C(1) - C(2)	1.562(6)
Ru = N(21)	2.130(3)	C(2) - O(1)	1.308(5)
Ru = O(1)	2.065(3)	C(2) - O(2)	1.205(6)
Ru-P	2.4174(15)	C(41) - O(41)	1.295(5)
Ru-O(41)	2.028(3)	C(41) - O(42)	1.215(5)
Ru-N(31)	1.760(4)	C(41) - C(42)	1.585(7)
N(31)-O(31)	1.145(4)	C(42)-O(43)	1.211(6)
		C(42)-C(43)	1.470(8)
N(11)-Ru-N(21)	83.12(14)	N(11)-Ru-P	95.78(11)
O(1)-Ru-N(11)	85.34(14)	N(21)-Ru-P	175.26(11)
O(1)-Ru-N(21)	86.66(14)	N(21)-Ru-N(31)	94.34(16)
O(1)-Ru-P(1)	88.66(9)	N(31)-Ru-O(41)	97.39(16)
N(21)-Ru-O(41)	91.99(14)	O(1)-Ru-N(31)	93.20(16)
N(11)-Ru-N(31)	177.14(15)	O(1)-Ru-O(41)	169.39(11)
N(11)-Ru-O(41)	84.05(14)	Ru-N(31)-O(31)	177.4(4)
		O(41)-C(41)-C(42)-O(43)	-18.5(7)

9638 Inorganic Chemistry, Vol. 47, No. 20, 2008

might be partially occupied. This could explain the slight deviation from the η^1 -planar geometry, as well as the rather long Ru–S(1) distance. Until now, in the literature two SO₂ complexes with carboxylato ligands have been described: the mononuclear complex [Ru(O₂CCF₃)(NH₃)₄(SO₂)](O₂-CCF₃), in which SO₂ coordinates *trans* to the carboxylato ligand, and the dinuclear complex [Mo₂(NTO)₂(S₂P(OEt)₂)₂(μ -O₂CMe)(μ -SBz)(μ -SO₂)], with bridging SO₂ and carboxylato ligands.^{31,34} Thus, to the best of our knowledge, **10a** and **10b** are the first examples of intramolecular Lewis acid–base adducts regarding SO₂ complexes.

Inspired by the reactivity of the carboxylato complexes toward CO and also by other ruthenium nitrosyl complexes described in the literature, such as [RuCpCl(NO)(PPh₃)]- PF_{6} ³⁵ the complex [Ru(bdmpza)(O₂CC(O)Ph)(PPh₃)] (3c) was reacted with gaseous nitric oxide (NO). A significant color change from dark purple to blue was observed. Once the solvent and the excess of NO were removed in vacuo, a red product was obtained. The IR spectrum (CH₂Cl₂) shows two signals at 1698 and 1645 cm⁻¹ which have been assigned to asymmetric carboxylate vibrations of the bis(3,5-dimethylpyrazol-1-yl)acetato and the benzoylformato (BF) ligand. A vibration at 1911 cm⁻¹ indicates a linear nitrosyl ligand.³⁶ The ¹H and ¹³C NMR spectra of the diamagnetic complex show two sets of methyl signals for the pyrazoles (¹H: 1.95, 2.36, 2.57, and 2.62 ppm; ¹³C: 11.1, 11.5, 13.9, and 14.3 ppm) as to be expected for an asymmetric geometry of the complex. The ¹³C NMR signal of the benzoylformate keto group is shifted slightly to higher field ($202.8 \rightarrow 186.7$ ppm) compared to that of the educt complex 3c. This finding is rather similar to the pyridine complex 8c and consequently indicates an uncoordinated keto group. ¹³C NMR signals at 163.0 and 169.4 ppm were assigned to the κ^1 -coordinated

⁽³⁴⁾ Wang, R.; Mashuta, M. S.; Richardson, J. F.; Noble, M. E. Inorg. Chem. 1996, 35, 3022–3030.

⁽³⁵⁾ Conroy-Lewis, F. M.; Redhouse, A. D.; Simpson, S. J. J. Organomet. Chem. 1990, 399, 307–315.

⁽³⁶⁾ Mingos, D. M. P.; Sherman, D. J. Adv. Inorg. Chem. **1989**, *34*, 293–377.

Table 11.	Spectroscopic	c and Structural	Data of Various	Cp, Cp*, Tp	, and bdmpza Nitros	yl Complexes
					,	/

1 1	1, 1, 1,	1 2 1		
complex	IR (NO) [cm ⁻¹]	d(Ru-NO>)/d(N-O) [Å]	∠(Ru−N−O) [deg]	³¹ P [ppm]
$[Ru(bdmpza)(O_2CC(O)Ph)(NO)(PPh_3)]^+ (12)$	1911 ^a			24.2
	1906 ^b			
[Ru(bdmpza)(O ₂ CMe)(NO)(PPh ₃)]BF ₄ (13a)	1912 ^a			23.5
	1897 ^b			
$[Ru(bdmpza)(O_2CPh)(NO)(PPh_3)]BF_4$ (13b)	1912 ^a			23.3
	1903 ^b			
[Ru(bdmpza)(O ₂ CC(O)Me)(NO)	1912 ^a	1.760(4)	177.4(4)	24.1
$(PPh_3)]BF_4$ (14a)	1904 ^b	1.145(4)		
[Ru(bdmpza)(O ₂ CC(O)Et)(NO)	1911 ^a			24
$(PPh_3)]BF_4$ (14b)	1904 ^b			
[Ru(bdmpza)(O ₂ CC(O)Ph)(NO)	1911 ^a			23.8
$(PPh_3)]BF_4$ (14c)	1906			
$[Ru(bdmpza)(Cl)_2(NO)]^5$	1868 ^a			
-	1872 ^b			
[Ru(bdmpza) ₂ (NO)]Cl ⁵	1862 ^a			
20	1860 ^b			
$[RuTpCl(CH_2C(O)p-CH_3C_6H_4)(NO)]^{38}$		1.742(2)	178.9(3)	
25		1.128(3)		
[RuCpCl(NO)(PPh ₃)]PF ₆ ³⁵	1849 ^c	1.775(5)	172.2(5)	37.1
		1.132(7)		
$[RuCp*(NO)(dppe)](PF_6)_2^{-54}$	1850 ^o	1.748(4)	174.1(4)	66.4
		1.141(5)		
^a CH ₂ Cl ₂ . ^b KBr. ^c Nujol.				

carboxylato groups of the bdmpza and BF ligands. The ³¹P NMR singlet signal of the PPh₃ ligand can be observed at 23.8 ppm. The product of the reaction can be precipitated from dichloromethane by adding diethylether. A molecular mass peak (FAB) at 791 agrees well with a complex cation [Ru(bdmpza)(O₂CC(O)Ph)(NO)(PPh₃)]⁺ and thus with a coordinated nitrosonium (NO⁺) ligand. Obviously, reaction of **3c** with a large excess of gaseous NO results in the formation of a complex cation [Ru(bdmpza)(O₂CC(O)Ph)-(NO)(PPh₃)]⁺ (**12**) (Scheme 4).

One explanation > for this NO⁺ formation might be the presence of NO₂ in the reaction mixture, which is almost impossible to prevent in such reactions. Because NO of low purity grade has been used in our reaction, the presence of NO₂ traces is very likely here. It is well-known that this might be a source of NO⁺ and NO₃^{-.37} Thus, the counteranion might be nitrate NO₃⁻, although nitrite NO₂⁻ cannot be ruled

Figure 12. SO₂ as σ -donor/ π -acceptor and as σ -acceptor respectively in SO₂ complexes.^{23–26}

Figure 13. (a) HOMO and LUMO of SO₂ according to literature²³⁻²⁶ and (b) calculated Kohn-Sham orbitals (DFT).

Scheme 4. Synthesis of Nitrosyl Complexes with Gaseous NO

out completely. Indeed analytical test reactions performed with **12** indicated traces of NO_3^- but no NO_2^- . Unfortunately, so far we cannot prove the formation of a NO_3^- counteranion unequivocally.

A similar reaction with an excess of NO is also possible with the acetato complex [Ru(bdmpza)(O₂CMe)(PPh₃)] (**2a**), although no complete conversion could be achieved so far. Nevertheless, we were able to analyze the reaction product [Ru(bdmpza)(O₂CMe)(NO)(PPh₃)]⁺ (**11**). ¹H NMR signals at 1.94, 2.07, 2.25, 2.56, and 2.63 ppm have been assigned to the five methyl groups, and singlets at 6.20, 6.41, and 6.67 ppm belong to the pyrazolyl protons and the CH bridge, thus indicating again an unsymmetrical complex. Similar to the benzoylformato complex **12**, the NO vibration is observed at 1911 cm⁻¹ in the IR spectrum. The M⁺ peak at 700 in the FAB mass spectrum fits to a [Ru(bdmpza)(O₂CMe)(NO)-(PPh₃)]⁺ cation. Again, the nature of the anion, most likely nitrate NO₃⁻, stays unresolved so far.

To verify the nitrosyl complex cations $[Ru(bdmpza)(O_2-CMe)(NO)(PPh_3)]^+$ (11) and $[Ru(bdmpza)(O_2CC(O)Ph)(NO)-$

- (38) Arikawa, Y.; Nishimura, Y.; Kawano, H.; Onishi, M. Organometallics 2003, 22, 3354–3356.
- (39) Mauthner, K.; Mereiter, K.; Schmid, R.; Kirchner, K. Inorg. Chim. Acta 1995, 236, 95–100.
- (40) Nagao, H.; Nishimura, H.; Funato, H.; Ichikawa, Y.; Howell, F. S.; Mukaida, M.; Kakihana, H. *Inorg. Chem.* **1989**, 28, 3955–3959.

⁽³⁷⁾ Burdinski, D.; Brans, H. J. A.; Decre, M. M. J. J. Am. Chem. Soc. 2005, 127, 10786–10787.

Scheme 5. Synthesis of Nitrosyl Complexes with NO[BF₄]

 (PPh_3)]⁺ (12), the carboxylato complexes [Ru(bdmpza)- $(O_2CR)(PPh_3)$] (**3a,b**) (R = Me, Ph), as well as the 2-oxocarboxylato complexes [Ru(bdmpza)(O₂CC(O)R)- (PPh_3)] (**3a**-c) (R = Me, Et, Ph), were reacted with [NO]BF₄ to yield the complexes [Ru(bdmpza)(O₂CR)(NO)(PPh₃)]BF₄ (13a,c) (R = Me, Ph) and [Ru(bdmpza)(O₂CC(O)R)- $(NO)(PPh_3)$]BF₄ (14a-c) (R = Me, Et, Ph) (Scheme 5.). NMR samples of the complex 11 in combination with 13a as well as of 12 and 14c indicated identical cations [Ru(bdmpza)- $(O_2CMe)(NO)(PPh_3)$ ⁺ and $[Ru(bdmpza)(O_2CC(O)Ph)(NO)$ -(PPh₃)]⁺, respectively, according to the spectroscopic data (¹H, ¹³C, and ³¹P). The fact that gaseous NO might be used as NO⁺ source has been described before.^{39,40} For example Kirchner et al. recently reported on a similar transformation of [Cp*Ru(dppe)]PF₆ to [Cp*Ru(dppe)(NO)](PF₆)₂ by either gaseous NO or [NO]PF₆.³⁹

In general, the yield of these reactions is rather high (84-98%), and reactions with the carboxylato complexes are faster compared to with the 2-oxocarboxylato complexes. The constitution of the nitrosyl complexes 13a,b and 14a-c is backed by M⁺ peaks in the FAB mass spectra. The ¹³C NMR signals assigned to the keto carbons of the nitrosyl 2-oxocarboxylato complexes 14a-c are shifted to higher field by 15 ppm compared to the educts **3a-c**, thus indicating a $\kappa^1 O^1$ -coordination of the 2-oxocarboxylato ligands. The ³¹P NMR signals are observed from 23.3 to 24.2 ppm. This means a high field shift of almost 25 ppm compared to the educts. The diamagnetic property observed for the nitrosyl complexes 11, 12, 13a, 13b, and 14a-c is typical of the {RuNO}⁶ type of complexes.⁴¹ The NO IR signals [around 1911 cm⁻¹ (CH₂Cl₂) and 1897 to 1906 cm⁻¹ (KBr)] are lying in between the vibration of free NO^+ (2377 cm⁻¹) and that of NO or NO $^-$ (1860 and 1470 $\rm cm^{-1},$ respectively), 36,42 indicating a nitrosonium NO⁺ ligand. Other cationic ruthe-

Figure 14. Molecular structure of [Ru(bdmpza)(O₂CC(O)Me)(NO)(PPh₃)]BF₄ (14a) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

nium nitrosyl complexes bearing Cp or Cp* ligands such as [CpRuCl(PPh₃)(NO)]PF₆ ($\tilde{\nu}$ (NO) = 1849 cm⁻¹ (Nujol)) and [Cp*Ru(dppe)(NO)](CF₃SO₃)₂ ($\tilde{\nu}$ (NO) = 1850 cm⁻¹ (Nujol)) exhibit NO vibrations at lower wavenumbers (see Table 11).^{35,39} It is noteworthy that the $\tilde{\nu}$ (NO) of bis(3,5-dimeth-ylpyrazol-1-yl)aceto nitrosyl complexes such as [Ru-(bdmpza)(Cl)₂(NO)] (1868 cm⁻¹ (CH₂Cl₂) and 1872 cm⁻¹ (KBr)) and [Ru(bdmpza)₂(NO)]Cl (1862 cm⁻¹ (CH₂Cl₂) and 1860 cm⁻¹ (KBr)), which have been reported recently by Cao and Otero, have been observed at much lower wavenumbers compared to the $\tilde{\nu}$ (NO) of **13a,b** and **14a-c** (Table 11).⁵

Crystals suitable for X-ray structure determination have been obtained for complex **14a**. The molecular structure of [Ru(bdmpza)(O₂CC(O)Me)(NO)(PPh₃)]BF₄ (**14a**) (Figure 14, Table 10) exhibits a complex geometry with the NO *trans* to a pyrazolyl donor and a κO^1 -coordination of the 2-oxocarboxylato ligand *trans* to the carboxylate donor of the bdmpza ligand. The distances and angles of the [Ru(bdmpza)(PPh₃)] fragment agree well with those of the structures **2a** × H₂O and **3c**.

The torsion angle \angle (O(41)–C(41)–C(42)–O(43)) of the 2-oxocarboxylato ligand in **14a** (-18.5(7)°) is bigger than in the benzoylformato complex **3c** [-0.3(5)°], but a conjugation across the π system of the 2-oxocarboxylato ligand should still be possible. The bond distances of the nitrosyl ligand are d(Ru-NO) = 1.760(4) Å and d(N-O) = 1.145(4)Å in **14a**, and the nitrosyl ligand is close to linear with \angle (Ru–N–O) = 177.4(4)°. These values agree well with those of the ruthenium(II) Cp and Tp nitrosyl complexes (Table 11).

Summary and Prospects

Many preparative and structural studies have demonstrated the versatility of the complexes [Ru(bdmpza)-(O₂CR)(PPh₃)] (**2a**, **2b**) and [Ru(bdmpza)(O₂C(CO)R)-(NO)(PPh₃)] (**3a-c**) as 16 VE fragments with hemilabile κ^2 -coordinating carboxylato and 2-oxocarboxylato ligands.

⁽⁴¹⁾ Enemark, J. H.; Feltham, R. D. *Coord. Chem. Rev.* **1974**, *13*, 339–406; Mononitrosyl complexes are described by {RuNO}ⁿ, where n is the number of d electron on ruthenium when the NO is formally bound as NO⁺

⁽⁴²⁾ McCleverty, J. A. Chem. Rev. 2004, 104, 403-418.

Solvent molecules (pyridine, acetonitrile) as well as small molecules and ions (CO, SO₂, NO⁺) have been coordinated to a [Ru(bdmpza)(O₂CR)(PPh₃)] fragment. The chances of generating otherwise unstable compounds in the protecting environment of the new transition metal fragments seem quite promising. Future studies will be able to build on these results and might expand them to an activation of small molecules. Correlations between structure and reactivity are beginning to be recognized with a higher reactivity of the κ^2 -carboxylato complexes.

Acknowledgment. We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft through SFB 583 "Redox-active metal complexes" and the Fonds der Chemie. The authors thank Prof. Dr. H. Fischer for support and discussion and the Degussa AG for a generous gift of rutheniumtrichloride hydrate.

Supporting Information Available: Crystallographic information files (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC8000224